A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
分析 根據(jù)直線方程可知直線恒過定點,如圖過A、B分別作AM⊥l于M,BN⊥l于N,根據(jù)|FA|=2|FB|,推斷出|AM|=2|BN|,點B為AP的中點、連接OB,可知|OB|=$\frac{1}{2}$|AF|,推斷出|OB|=|BF|,進而求得點B的橫坐標,則點B的坐標可得,最后利用直線上的兩點求得直線的斜率.
解答 解:設(shè)拋物線C:y2=8x的準線為l:x=-2
直線y=k(x+2)恒過定點P(-2,0)
如圖過A、B分別作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,則|AM|=2|BN|,
點B為AP的中點、連接OB,
則|OB|=$\frac{1}{2}$|AF|,
又∵|FA|=2|FB|,
∴|OB|=|BF|,點B的橫坐標為1,
∵k>0,
∴點B的坐標為(1,2$\sqrt{2}$),
∴k=$\frac{2\sqrt{2}-0}{1-(-2)}$=$\frac{2\sqrt{2}}{3}$.
故選:A.
點評 本題考查了拋物線的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) | D. | (-$\sqrt{2}$,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)濟損失不超過 4000元 | 經(jīng)濟損失超過 4000元 | 合計 | |
捐款超過 500元 | a=30 | b | |
捐款不超 過500元 | c | d=6 | |
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com