【題目】已知橢圓的離心率,橢圓上的點到左焦點的距離的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線與橢圓交于、兩點.在軸上是否存在點,使得,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

【答案】(1)(2)

【解析】

1橢圓上的點到左焦點的距離最大值為a+c,再結(jié)合離心率可得a和c的值,再由可得橢圓方程;(2)將直線方程代入橢圓方程,利用弦長公式求得丨MN丨,由P在線段MN的中垂線上,利用韋達定理求出中點D的坐標(biāo),寫出直線PD的方程,令x=0,平方后即可求得m范圍;

(1)由題設(shè)條件可得,

解得,所以,,

橢圓的標(biāo)準(zhǔn)方程為:

(2)設(shè),,

整理得:

,

,,

假設(shè)存在點滿足題意,,

,

化簡整理得

此時判別式 恒成立,

所以,

設(shè)中點,則,,

,則在線段的中垂線上.

因為,直線的方程為:,

,則

,∴,∴

.

即:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,.過的中點于點,連接.

(Ⅰ)證明:平面;

(Ⅱ)若平面與平面所成的銳二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題方程表示焦點在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一組圓.下列四個命題正確的是( )

A. 存在,使圓與軸相切

B. 存在一條直線與所有的圓均相交

C. 存在一條直線與所有的圓均不相交

D. 所有的圓均不經(jīng)過原點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海產(chǎn)品經(jīng)銷商調(diào)查發(fā)現(xiàn),該海產(chǎn)品每售出噸可獲利萬元,每積壓噸則虧損萬元.根據(jù)往年的數(shù)據(jù),得到年需求量的頻率分布直方圖如圖所示,將頻率視為概率.

(1)請補齊上的頻率分布直方圖,并依據(jù)該圖估計年需求量的平均數(shù);

(2)今年該經(jīng)銷商欲進貨噸,以(單位:噸, )表示今年的年需求量,以(單位:萬元)表示今年銷售的利潤,試將表示為的函數(shù)解析式;并求今年的年利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 依法納稅是每個公民應(yīng)盡的義務(wù),個人取得的所得應(yīng)依照《中華人民共和國個人所得稅法》向國家繳納個人所得稅(簡稱個稅).日起,個稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計算公式為:個稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).①應(yīng)納稅所得額的計算公式為:應(yīng)納稅所得額=綜合所得收入額-基本減除費用-專項扣除-專項附加扣除-依法確定的其他扣除.②其中,“基本減除費用”(免征額)為每年元.稅率與速算扣除數(shù)見下表.

(1)設(shè)全年應(yīng)納稅所得額為,應(yīng)繳納個稅稅額為,求的解析式;

(2)小李全年綜合所得收入額為元,假定繳納的基本養(yǎng)老保險、基本醫(yī)療保險、失業(yè)保險等社會保險費和住房公積金占綜合所得收入額的比例分別是,,,專項附加扣除是元,依法確定其他扣除是元,那么他全年應(yīng)繳納多少綜合所得個稅?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種藥物在血液中以每小時的比例衰減,現(xiàn)給某病人靜脈注射了該藥物2500mg,設(shè)經(jīng)過x個小時后,藥物在病人血液中的量為ymg

x的關(guān)系式為______;

當(dāng)該藥物在病人血液中的量保持在1500mg以上,才有療效;而低于500mg,病人就有危險,要使病人沒有危險,再次注射該藥物的時間不能超過______小時精確到

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,,點為棱的一點.

(Ⅰ)若點為棱的中點,證明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案