14.利用秦九韶算法求多項(xiàng)式f(x)=2x5+5x4+5x3+10x2+6x+1當(dāng)x=-2時(shí)的值.

分析 所給的多項(xiàng)式寫成關(guān)于x的一次函數(shù)的形式,依次寫出,得到最后結(jié)果,從里到外進(jìn)行運(yùn)算,得到要求的值.

解答 解:f(x)=2x5+5x4+5x3+10x2+6x+1=((((2x+5)x+5)x+10)x+6)x+1
∴x=-2時(shí),v0=2,v1=2×(-2)+5=1,v2=1×(-2)+5=3,
v3=3×(-2)+10=4,v4=4×(-2)+6=-2,v5=-2×(-2)+1=5,…(10分)
故f(-2)=5.                                                    …(12分)

點(diǎn)評(píng) 本題考查秦九韶算法,本題解題的關(guān)鍵是對(duì)多項(xiàng)式進(jìn)行整理,得到符合條件的形式,不管是求計(jì)算結(jié)果還是求加法和減法的次數(shù)都可以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等比數(shù)列{an}中,a3=-1,求a1a2a3a4a5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\underset{lim}{x→0}$$\frac{sin2x}{ax}$=$\frac{2}{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知U=R,A={x|-5≤x<1},B={x|-2<x≤2},P={x|x≤-1或x≥$\frac{3}{2}$},求:
(1)A∪B;        
(2)(A∩B)∩(∁UP).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了解1500名學(xué)生對(duì)學(xué)校教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為50的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔k為( 。
A.40B.30C.20D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)字“2016”中,各位數(shù)字相加和為9,稱該數(shù)為“長(zhǎng)久四位數(shù)”,則用數(shù)字0,1,2,3,4,5,6組成的無重復(fù)數(shù)字且大于2016的“長(zhǎng)久四位數(shù)”有( 。﹤(gè).
A.39B.40C.41D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}中,a3=4,a7=16,則a11=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若存在實(shí)數(shù)|a-2|≤2成立,則實(shí)數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),$f(x)={log_{\frac{1}{3}}}$2x
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的表達(dá)式            
(2)解不等式f(x)≤3.

查看答案和解析>>

同步練習(xí)冊(cè)答案