分析 (1)利用正弦函數(shù)的周期性,求得ω的值.
(2)利用y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,求得g(x)的單調(diào)區(qū)間.
解答 解:(1)由于函數(shù)f(x)=2sin(2ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{2ω}$=π,∴ω=1.
(2)將函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,
可得y=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=2sin(2x+$\frac{2π}{3}$)的圖象,
再將所得圖象各點(diǎn)的橫坐標(biāo)縮小為原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),
得到函數(shù)g(x)=2sin(4x+$\frac{2π}{3}$)的圖象.
令2kπ-$\frac{π}{2}$≤4x+$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,求得$\frac{kπ}{2}$-$\frac{7π}{24}$≤x≤$\frac{kπ}{2}$-$\frac{π}{24}$,
故函數(shù)g(x)的增區(qū)間為[$\frac{kπ}{2}$-$\frac{7π}{24}$,$\frac{kπ}{2}$-$\frac{π}{24}$],k∈Z.
令2kπ+$\frac{π}{2}$≤4x+$\frac{2π}{3}$≤2kπ+$\frac{3π}{2}$,求得$\frac{kπ}{2}$-$\frac{π}{24}$≤x≤$\frac{kπ}{2}$+$\frac{5π}{24}$,
故函數(shù)g(x)的增區(qū)間為[$\frac{kπ}{2}$-$\frac{π}{24}$,$\frac{kπ}{2}$+$\frac{5π}{24}$],k∈Z.
點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性、單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-5,5) | B. | (5,-5) | C. | (-3,3) | D. | (3,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(-1)<f(2)<f(3) | B. | f(2)<f(3)<f(-4) | C. | f(-2)<f(0)<f($\frac{1}{2}$) | D. | f(5)<f(-3)<f(-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 定義域上的增函數(shù) | D. | 定義域上的減函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com