17.已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時(shí),求集合(∁UA)∩B;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

分析 (1)求出A中不等式的解集確定出A,把m的值代入B確定出B,求出A補(bǔ)集與B的交集即可;
(2)由題意得到B為A的子集,分B為空集與不為空集兩種情況求出m的范圍即可.

解答 解:(1)集合A={x|x2-3x-10<0}={x|(x+2)(x-5)<0}
={x|-2<x<5},…(2分)
當(dāng)m=3時(shí),B={x|4≤x≤5};…(3分)
所以∁RA={x|x≤-2或x≥5};…(4分)
所以(∁RA)∩B={x|x=5}={5};…(5分)
(2)因?yàn)锳∩B=B,所以B⊆A;…(6分)
①當(dāng)B=∅時(shí),m+1>2m-1,解得m<2,此時(shí)B⊆A;…(7分)
②當(dāng)B≠∅時(shí),應(yīng)滿足$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1>-2}\\{2m-1<5}\end{array}\right.$,
解得2≤m<3,此時(shí)B⊆A;…(9分)
綜上所述,m的取值范圍是{m|m<3}.…(10分)

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)ft(x)=(x-t)2-t,t∈R,設(shè)f(x)=$\left\{{\begin{array}{l}{{f_a}(x),{f_a}(x)<{f_b}(x)}\\{{f_b}(x),{f_a}(x)≥{f_b}(x)}\end{array}}$,若0<a<b,則( 。
A.f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≥f(b+x)B.f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≤f(b+x)
C.f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≥f(a+x)D.f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≤f(a+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知各項(xiàng)均不相等的等差數(shù)列{an}的前五項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某制瓶廠要制造一批軸截面如圖所示的瓶子,瓶子是按照統(tǒng)一規(guī)格設(shè)計(jì)的,瓶體上部為半球體,下部為圓柱體,并保持圓柱體的容積為3π.設(shè)圓柱體的底面半徑為x,圓柱體的高為h,瓶體的表面積為S.
(1)寫出S關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)如何設(shè)計(jì)瓶子的尺寸(不考慮瓶壁的厚度),可以使表面積S最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sinωx+cosωx(ω>0),在曲線y=f(x)與直線y=1的交點(diǎn)中,若相鄰交點(diǎn)距離的最小值為$\frac{π}{4}$,則f(x)的最小正周期為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在區(qū)間D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱f(x)是區(qū)間D上有界函數(shù),其中M稱為f(x)上的一個(gè)上界,已知函數(shù)g(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{1-x}$為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[$\frac{1}{3}$,$\frac{3}{5}$]上的所有上界構(gòu)成的集合;
(2)若g(1-m)+g(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={0,1,log3(x2+2),x2-3x},若-2∈A,則x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,矩形草坪AMPN中,點(diǎn)C在對(duì)角線MN上.CD垂直于AN于點(diǎn)D,CB垂直于AM于點(diǎn)B,|CD|=|AB|=3米,|AD|=|BC|=2米,設(shè)|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若點(diǎn)P(cosθ,sinθ)在直線2x+y=0上,則cos2θ+$\frac{1}{2}$sin2θ=( 。
A.-1B.-$\frac{1}{2}$C.$\frac{7}{5}$D.$\frac{7}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案