分析 設(shè)a=sinα,b=sinβ,c=sin(α+β),($α,β∈({0,\frac{π}{2}})$),由余弦定理結(jié)合三角恒等變換公式可得cosC=-cos(α+β),進(jìn)而得到sinC=$\sqrt{1-co{s}^{2}C}$=sin(α+β),再由正弦定理可得外接圓的直徑為1,由圓的面積公式計(jì)算即可得到所求值.
解答 解:設(shè)a=sinα,b=sinβ,c=sin(α+β),($α,β∈({0,\frac{π}{2}})$),
由sin(a+b)sin(a-b)=(sinacosb+cosasinb)(sinacosb-cosasinb)
=sin2acos2b-cos2asin2b=sin2a(1-sin2b)-(1-sin2a)sin2b=sin2a-sin2b,
可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{si{n}^{2}α+si{n}^{2}β-si{n}^{2}(α+β)}{2sinαsinβ}$
=$\frac{si{n}^{2}α+sin(α+2β)sin(-α)}{2sinαsinβ}$=$\frac{sinα-sin(α+2β)}{2sinβ}$
=$\frac{2cos(α+β)sin(-β)}{2sinβ}$=-cos(α+β),
則sinC=$\sqrt{1-co{s}^{2}C}$=sin(α+β),
即有△ABC外接圓的直徑2R=$\frac{c}{sinC}$=$\frac{sin(α+β)}{sin(α+β)}$=1,
可得R=$\frac{1}{2}$,△ABC外接圓的面積為$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.
點(diǎn)評(píng) 本題考查正弦定理和余弦定理的運(yùn)用,考查外接圓的面積,求出半徑是解題的關(guān)鍵,同時(shí)考查三角恒等變換的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{3}{2}})$ | B. | $({\frac{3}{2},3})$ | C. | (1,3) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>1 | B. | a<1 | C. | a>2 | D. | a<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com