分析 (1)由S4=a5+13,且a1,a4,a13恰為等比數(shù)列{bn}的前三項可得關(guān)于a1,d的方程,解出a1,d,利用等差數(shù)列等比數(shù)列的通項公式可得結(jié)果,
(2)根據(jù)等比數(shù)列的前n項和公式,求出Tn,對任意n∈N+,$({T_n}+\frac{3}{2})k≥3n-9$恒成立等價于k≥$\frac{2n-6}{{3}^{n}}$恒成立,設(shè)f(n)=$\frac{2n-6}{{3}^{n}}$,利用導(dǎo)數(shù)判斷數(shù)列為增數(shù)列,再用極限的定義求出答案即可.
解答 解:(1)設(shè){an}的公差為d,
∵S4=a5+13,
∴4a1+6d=a1+4d+13,
即3a1+2d=13,
∵a1,a4,a13恰為等比數(shù)列{bn}的前三項.
∴(a1+3d)2=a1(a1+12d),
解得a1=3,d=2,
∴{an}的通項公式為an=3+(n-1)•2=2n+1,
∴b2=a4=a1+3d=3+3×2=9,b1=a1=3,
∴q=3,
∴bn=3n,
(2)數(shù)列{bn}的前n項和為Tn=$\frac{3(1-{3}^{n})}{1-3}$=$\frac{1}{2}$•3n+1-$\frac{3}{2}$,
∵對任意n∈N+,$({T_n}+\frac{3}{2})k≥3n-9$恒成立,
∴$\frac{1}{2}$•3n+1k≥3n-9恒成立,
∴k≥$\frac{2n-6}{{3}^{n}}$恒成立,
設(shè)f(n)=$\frac{2n-6}{{3}^{n}}$,
∴f′(n)=$\frac{2-ln3}{{3}^{n}}$=$\frac{ln{e}^{2}-ln3}{{3}^{n}}$>0恒成立,
∴數(shù)列f(n)=$\frac{2n-6}{{3}^{n}}$為遞增數(shù)列,
∴$\underset{lim}{n→∞}$=$\frac{2n-6}{{3}^{n}}$=0,
∴k≥0
故k的取值范圍為[0,+∞)
點評 本題考查等差數(shù)列等比的通項公式、求和公式,以及數(shù)列和函數(shù)特征,以及不等式恒成立的問題,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ | B. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$ | ||
C. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$ | D. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\frac{8}{5}$ | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com