9.已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an-1-1(n∈N+,n≥2).
(1)求證:數(shù)列{an-1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{n•an-n}的前n項(xiàng)和Sn

分析 (1)由an=2an-1-1(n∈N+,n≥2),變形為:an-1=2(an-1-1).利用等比數(shù)列的定義及其通項(xiàng)公式即可得出.
(2)由(1)可得n•an-n=n•2n-1.再利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 (1)證明:∵an=2an-1-1(n∈N+,n≥2),變形為:an-1=2(an-1-1).
又a1-1=1,∴數(shù)列{an-1}為等比數(shù)列,首項(xiàng)為1,公比為2.
∴an-1=2n-1,可得an=2n-1+1.
(2)解:數(shù)列n•an-n=n•2n-1
∴數(shù)列{n•an-n}的前n項(xiàng)和Sn=1+2×2+3×22+…+n•2n-1,
∴2Sn=2+2×22+3×23+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n=(1-n)•2n-1,
解得Sn=(n-1)•2n+1.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的定義通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow a=(4,3)$,$\overrightarrow b=(1,2)$.
(1)設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,求cosθ的值;
(2)若$\overrightarrow a-λ\overrightarrow b$與$2\overrightarrow a+\overrightarrow b$垂直,求實(shí)數(shù)λ的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≥4\\ f(x+1),x<4\end{array}\right.$則f(log23)的值為(  )
A.-24B.-12C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.給出下列說(shuō)法,其中正確的個(gè)數(shù)是( 。
①命題“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是假命題;
②命題p:?x0∈R,使sinx0>1,則¬p:?x∈R,sinx≤1;
③“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函數(shù)y=sin(2x+φ)為偶函數(shù)”的充要條件;
④命題p:“?x∈(0,$\frac{π}{2}$)”,使sinx+cosx=$\frac{1}{2}$”,命題q:“在△ABC中,若sinA>sinB,則A>B”,那么命題(¬p)∧q為真命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)y=x2-4ax+1在[1,3]上是增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},\frac{3}{2}}]$D.$[{\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4x+3})$,則函數(shù)f(x)的定義域是(-∞,1)∪(3,+∞),單調(diào)遞減區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,則實(shí)數(shù)m的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.等差數(shù)列{an}中,若a2+a4+a6=3,則a1+a3+a5+a7=(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案