18.若f(x)在R上可導(dǎo),f(x)=x2+2f′(2)x+3,則f'(0)=-8.

分析 首先對(duì)已知等式求導(dǎo),然后對(duì)x賦值為2,0,得到所求.

解答 解:由已知得到f'(x)=[x2+2f′(2)x+3]'=2x+2f'(2),
取x=2,得到f'(2)=4+2f'(2),得到f'(2)=-4,
所以f'(0)=2f'(2)=-8;
故答案為:-8.

點(diǎn)評(píng) 本題考查了函數(shù)的求導(dǎo)以及賦值求函數(shù)值;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,半圓O的直徑為2,A為直徑延長(zhǎng)線上的一點(diǎn),OA=2,B為半圓上任意一點(diǎn),以AB為一邊作等邊三角形ABC.當(dāng)四邊形OACB面積最大時(shí),∠AOB=150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為$\frac{1}{2}$的直線l與橢圓C交于A,B兩點(diǎn),點(diǎn)P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點(diǎn)M,N,求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在各棱長(zhǎng)為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求三棱柱ABC-A1B1C1的體積;
(2)已知點(diǎn)D是平面ABC內(nèi)一點(diǎn),且四邊形ABCD為平行四邊形,在直線AA1上是否存在點(diǎn)P,使DP∥平面AB1C?若存在,請(qǐng)確定點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在空間直角坐標(biāo)系Oxyz中,已知A(1,-2,3),B(2,1,-1),若直線AB交平面yoz于點(diǎn)C,則點(diǎn)C的坐標(biāo)為(0,-5,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中:
①若x2-3x+2=0,則x=1或x=2       
②若-2≤x≤3,則(x+2)(x-3)≤0
③若x=y=0,則x2+y2=0
④若x、y∈N*,x+y是奇數(shù),則x、y中一個(gè)是奇數(shù),一個(gè)是偶數(shù).
那么(  )
A.①的逆命題為真B.②的否命題為假C.③的逆否命題為假D.④的逆命題為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在(0,+∞)上的函數(shù)f(x)滿(mǎn)足x2f′(x)+1>0,f(1)=5,則不等式$f(x)<\frac{1}{x}+4$的解集為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知a,b是不相等的正實(shí)數(shù),則$\frac{a}{\sqrt}$+$\frac{\sqrt{a}}$與$\sqrt{a}$+$\sqrt$兩個(gè)數(shù)的大小順序是$\frac{a}{\sqrt}$+$\frac{\sqrt{a}}$>$\sqrt{a}$+$\sqrt$.

查看答案和解析>>

同步練習(xí)冊(cè)答案