15.已知函數(shù)f(x)=($\frac{1}{2}$)x,函數(shù)g(x)=log${\;}_{\frac{1}{2}}}$x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[($\frac{1}{2}$)t+1,($\frac{1}{2}$)t]時(shí),求函數(shù)y=[g(x)]2-2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log${\;}_{\frac{1}{2}}}$f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說(shuō)明理由.

分析 (1)g(ax2+2x+1)的定義域?yàn)镽,即所以ax2+2x+1>0對(duì)一切x∈R成立,轉(zhuǎn)化為一元二次函數(shù)問(wèn)題;
(2)利用換元法構(gòu)造新函數(shù)y=u2-2u+2=(u-1)2+1,u∈[t,t+1];對(duì)參數(shù)t分類討論其位置,判斷函數(shù)的最小值即可;
(3)根據(jù)函數(shù)的單調(diào)性,列出方程組$\left\{{\begin{array}{l}{{m^2}=2m}\\{{n^2}=2n}\end{array}}\right.$,轉(zhuǎn)化為:即m、n是方程x2=2x的兩非負(fù)實(shí)根,且m<n;

解答 解:(1)$g(a{x^2}+2x+1)={log_{\frac{1}{2}}}(a{x^2}+2x+1)$定義域?yàn)镽;
所以ax2+2x+1>0對(duì)一切x∈R成立;                   
當(dāng)a=0時(shí),2x+1>0不可能對(duì)一切x∈R成立;           
所以$\left\{{\begin{array}{l}{a>0}\\{△=4-4a<0}\end{array}}\right.$   即:$\left\{{\begin{array}{l}{a>0}\\{a>1}\end{array}}\right.解得a>1$;
綜上  a>1.
(2)$y={({log_{\frac{1}{2}}}x)^2}-2({log_{\frac{1}{2}}}x)+2,x∈[{(\frac{1}{2})^{t+1}},{(\frac{1}{2})^t}]$;
令$u={log_{\frac{1}{2}}}x∈[t,t+1]$;
所以y=u2-2u+2=(u-1)2+1,u∈[t,t+1];
當(dāng)t≥1時(shí),${y_{min}}={t^2}-2t+2$;
當(dāng)0<t<1時(shí),ymin=1;
當(dāng)t≤0時(shí),${y_{min}}={t^2}+1$;
所以 $h(t)=\left\{{\begin{array}{l}{{t^2}+1t≤0}\\{10<t<1}\\{{t^2}-2t+2t≥1}\end{array}}\right.$;
(3)y=x2在[0,+∞)上是增函數(shù);
若存在非負(fù)實(shí)數(shù)m、n滿足題意,則$\left\{{\begin{array}{l}{{m^2}=2m}\\{{n^2}=2n}\end{array}}\right.$;
即m、n是方程x2=2x的兩非負(fù)實(shí)根,且m<n;
所以m=0,n=2;
即存在m=0,n=2滿足題意.

點(diǎn)評(píng) 本題主要考查了一元二次函數(shù)的圖形特征,利用換元法構(gòu)造新函數(shù),分類討論求函數(shù)的最值以及函數(shù)單調(diào)性的應(yīng)用,屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=f(x)(x∈R)滿足:對(duì)一切x∈R,f(x)>0,f(x+1)=$\sqrt{7-{f}^{2}(x)}$時(shí),當(dāng)x∈[0,1)時(shí),f(x)=$\left\{\begin{array}{l}{x+2(0≤x<\sqrt{5}-2)}\\{\sqrt{5}(\sqrt{5}-2≤x<1)}\end{array}\right.$,則f(2017-$\sqrt{3}$)=(  )
A.2$\sqrt{2\sqrt{3}-3}$B.2-$\sqrt{3}$C.2$+\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三個(gè)函數(shù)①y=$\frac{1}{x}$;②y=2-x;③y=-x3中,在其定義域內(nèi)是奇函數(shù)的個(gè)數(shù)是( 。
A.1B.0C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-2|x|-1.
(1)求證:f(x)是偶函數(shù);
(2)畫(huà)出函數(shù)f(x)的圖象,并寫(xiě)出f(x)增區(qū)間;
(3)若方程f(x)=a有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線l:y=kx+2與橢圓E:x2+$\frac{{y}^{2}}{5}$=1交于A,B兩點(diǎn),若三角形AOB的面積$\frac{\sqrt{5}}{2}$,求直線的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,已知一座山高BC=80米,為了測(cè)量另一座山高M(jìn)N,和兩山頂之間的距離CM,在A點(diǎn)測(cè)得M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠BAC=30°,C、M兩點(diǎn)的張角∠MAC=60°,從C點(diǎn)測(cè)得∠ACM=75°,則MN與CM分別等于多少米( 。
A.40(3+$\sqrt{3}$),140$\sqrt{2}$B.40(3+$\sqrt{3}$),80$\sqrt{6}$C.60($\sqrt{2}$+$\sqrt{3}$),140$\sqrt{2}$D.60($\sqrt{2}$+$\sqrt{3}$),80$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合M={y|y≥-1),N={x|-1≤x≤1),則M∩N=( 。
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,AB=9,AC=15,∠BAC=120°,P是△ABC所在平面外一點(diǎn),P到三個(gè)頂點(diǎn)間的距離都是14,則P到△ABC所在平面的距離為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$f(x)=\frac{{\sqrt{1-{x^2}}}}{|x+3|-3}$,則f (x)( 。
A.是偶函數(shù),而非奇函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是奇函數(shù),而非偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案