5.拋擲一枚骰子(六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),則事件“向上的數(shù)字為奇數(shù)或向上的數(shù)字大于4”發(fā)生的概率為$\frac{2}{3}$.

分析 分別求出P(向上的數(shù)字為奇數(shù)),p(向上的數(shù)字大于4),p(向上的數(shù)字為奇數(shù)且向上的數(shù)字大于4),從而求出向上的數(shù)字為奇數(shù)或向上的數(shù)字大于4”發(fā)生的概率即可.

解答 解:P(向上的數(shù)字為奇數(shù)或向上的數(shù)字大于4)
=P(向上的數(shù)字為奇數(shù))+p(向上的數(shù)字大于4)-p(向上的數(shù)字為奇數(shù)且向上的數(shù)字大于4)
=$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{6}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了古典概型問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=|x-1|+2|x+1|的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)設(shè)a,b∈R,a2+b2=m,求$\frac{1}{{a}^{2}+1}+\frac{4}{^{2}+1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x∈N|x-2≤0},集合B={x|x2-x-2<0},則A∩B=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=|lg(x-1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為( 。
A.$({3+2\sqrt{2},+∞})$B.$[{3+2\sqrt{2},+∞})$C.(6,+∞)D.[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤1\end{array}\right.$,則z=2x+y-5的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知三角形ABC是單位圓的內(nèi)接三角形,AB=AC=1,過點(diǎn)A作BC的垂線交單位圓于點(diǎn)D,則$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的通項(xiàng)公式為an=2n-(-1)n,n∈N*
(1)在數(shù)列{an}中,是否存在連續(xù)3項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng),若不存在,說明理由;
(2)試證在數(shù)列{an}中,一定存在滿足條件1<r<s的正整數(shù)r、s,使得a1、ar、as成等差數(shù)列;并求出正整數(shù)r、s之間的關(guān)系;
(3)在數(shù)列{an}中是否存在某4項(xiàng)成等差數(shù)列?若存在,求出所有滿足條件的項(xiàng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,$|\overrightarrow a|=1$,$|2\overrightarrow a-\overrightarrow b|=\sqrt{7}$,則$|\overrightarrow b|$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,$tanA=\frac{1}{2},cosB=\frac{{3\sqrt{10}}}{10}$,則tanC=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案