分析 將點(2,$\sqrt{2}$)代入解析式列出方程,結(jié)合條件求出m的值,由冪函數(shù)的性質(zhì)判斷f(x)在定義域上的單調(diào)性,利用定義域、單調(diào)性轉(zhuǎn)化不等式,即可求出實數(shù)a的取值范圍.
解答 解:∵冪函數(shù)f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N+)經(jīng)過點(2,$\sqrt{2}$),
∴2${\;}^{({m}^{2}+m)^{-1}}$=$\sqrt{2}$=${2}^{\frac{1}{2}}$,即$\frac{1}{{m}^{2}+m}=\frac{1}{2}$,
解得m=1或m=-2(舍去),
∴f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$,則f(x)在[0,+∞)上單調(diào)遞增,
∴由f(2-a)>f(a-1)得,$\left\{\begin{array}{l}{2-a>a-1}\\{a-1≥0}\end{array}\right.$,
解得$1≤a<\frac{3}{2}$,
∴實數(shù)a的取值范圍是$[1,\frac{3}{2})$,
故答案為:$[1,\frac{3}{2})$.
點評 本題考查了待定系數(shù)法求冪函數(shù)的解析式,冪函數(shù)的定義域、單調(diào)性的應(yīng)用,注意函數(shù)的定義域.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值1,且為偶函數(shù) | B. | 有最大值3,且為偶函數(shù) | ||
C. | 有最小值1,且為非奇非偶函數(shù) | D. | 無最值,且為非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com