【題目】已知函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),判斷 上的單調(diào)性,并說(shuō)明理由;

(3)當(dāng)時(shí),求證: ,都有

【答案】(1);(2見解析;(3見解析

【解析】試題分析:(1)由得切線斜率,由點(diǎn)斜式寫切線方程即可;

(2),易知在,從而得知函數(shù)為增函數(shù);

(3)由2可知,當(dāng)時(shí), 在區(qū)間單調(diào)遞增,易知不等式成立;當(dāng)時(shí),設(shè) ,分析單調(diào)性可知存在唯一的實(shí)數(shù),使得 ,所以當(dāng)時(shí),對(duì)于任意的 .

試題解析:

1)當(dāng)時(shí), , .

,

所以曲線處的切線方程為

2方法1:因?yàn)?/span>,所以.

因?yàn)?/span>,所以,所以.

所以 當(dāng)時(shí), ,所以在區(qū)間單調(diào)遞增.

方法2:因?yàn)?/span>,所以.

, ,

x的變化情況如下表:

x

+

極大值

當(dāng)時(shí), .

所以時(shí), ,即,

所以在區(qū)間單調(diào)遞增.

3方法1:由2可知,當(dāng)時(shí), 在區(qū)間單調(diào)遞增,

所以時(shí), .

當(dāng)時(shí),設(shè)

,

x的變化情況如下表:

x

+

極大值

所以上單調(diào)遞增,在上單調(diào)遞減

因?yàn)?/span>, ,

所以存在唯一的實(shí)數(shù),使得,

且當(dāng)時(shí), ,當(dāng)時(shí),

所以上單調(diào)遞增, 上單調(diào)遞減.

, ,

所以當(dāng)時(shí),對(duì)于任意的, .

綜上所述,當(dāng)時(shí),對(duì)任意的,均有.

方法2:由可知,當(dāng)時(shí), 在區(qū)間單調(diào)遞增,

所以時(shí), .

當(dāng)時(shí)可知, 上單調(diào)遞增,在上單調(diào)遞減,

因?yàn)?/span> ,

所以存在唯一的實(shí)數(shù),使得

且當(dāng)時(shí), ,當(dāng)時(shí), ,

所以上單調(diào)遞增, 上單調(diào)遞減.

, ,

所以當(dāng)時(shí),對(duì)于任意的,.

綜上所述,當(dāng)時(shí),對(duì)任意的,均有.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線.

I)求此圓的方程;

II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)上單調(diào)遞增,又函數(shù).

(1)求實(shí)數(shù)的值,并說(shuō)明函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且不等式對(duì)任意的恒成立.

(Ⅰ) 求的關(guān)系;

(Ⅱ) 若數(shù)列滿足:,為數(shù)列的前項(xiàng)和.求證:;

(Ⅲ) 若在數(shù)列中,為數(shù)列的前項(xiàng)和.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱臺(tái)中, 底面,平面平面的中點(diǎn).

(1)證明: ;

(2)若,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,則a的取值范圍是______

②若x1,x2是函數(shù)y=f(x)在[0,]內(nèi)的兩個(gè)零點(diǎn),則sin(x1+x2)=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,

PB=

(Ⅰ)求證:BC⊥PB;

(Ⅱ)求二面角P一CD一A的余弦值;

(Ⅲ)若點(diǎn)E在棱PA上,且BE//平面PCD,求線段BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓 上, 是橢圓的一個(gè)焦點(diǎn).

)求橢圓的方程;

)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線截得的弦長(zhǎng)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓,圓與圓的公切線的條數(shù)的可能取值共有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案