已知x∈(2kπ-
3
4
π,2kπ+
π
4
)(k∈Z),且cos(
π
4
-x)=-
3
5
,則cos2x的值是( 。
A、-
7
25
B、-
24
25
C、
24
25
D、
7
25
考點:兩角和與差的余弦函數(shù),二倍角的余弦
專題:三角函數(shù)的求值
分析:根據(jù)三角函數(shù)的角之間的關(guān)系,利用倍角公式即可求出結(jié)論.
解答: 解:∵2(
π
4
-x)=
π
2
-2x
,
cos2x=sin(
π
2
-2x)=sin2(
π
4
-x)
=2sin(
π
4
-x)cos(
π
4
-x)

∵x∈(2kπ-
3
4
π,2kπ+
π
4
),
π
4
-x∈(-2kπ,-2kπ+
π
2
),
∴sin(
π
4
-x)>0,
即sin(
π
4
-x)=
4
5

cos2x=2sin(
π
4
-x)cos(
π
4
-x)
=-2×
3
5
×
4
5
=-
24
25
,
故選:B.
點評:本題主要考查三角函數(shù)值的計算,利用余弦函數(shù)的倍角公式是解決本題的根據(jù),考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,若a3=6,s3=
3
0
4xdx
,則公比q的值為( 。
A、1
B、-
1
2
C、1或-
1
2
D、-1或-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面命題正確的個數(shù)為
(1)垂直于同一條直線的兩直線互相平行    
(2)直線L不在平面α內(nèi),則直線L與平面α沒有公共點   
(3)兩條平行線中一條平行于一個平面,另一條不一定平行這個平面
(4)m,n為兩條不同直線,α,β是兩個不同平面,若m⊥α,n⊥β,m⊥n,則α⊥β
(5)分別在兩個互相平行的平面內(nèi)的兩條直線平行或異面( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x2+1,x≤1
lnx,x>1
,則f[f(e)](e為自然對數(shù)的底數(shù))=( 。
A、0
B、1
C、2
D、ln(e2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2x3+
3x
+cosx,則導(dǎo)數(shù)y′=( 。
A、6x2+x-
2
3
-sin x
B、2x2+
1
3
x-
2
3
-sin x
C、6x2+
1
3
x-
2
3
+sin x
D、6x2+
1
3
x-
2
3
-sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線S:y=3x-x3及點P(2,-2),則過點P可向S引切線的條數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的函數(shù),導(dǎo)函數(shù)f′(x)滿足f′(x)<f(x)對于x∈R恒成立,則(  )
A、f(2)>e2f(0),f(2011)>e2011f(0)
B、f(2)<e2f(0),f(2011)>e2011f(0)
C、f(2)>e2f(0),f(2011)<e2011f(0)
D、f(2)<e2f(0),f(2011)<e2011f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和公式為Sn=n2-6n+3,則a7+a8+a9+a10等于( 。
A、7B、13C、33D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx+cosx,2),
b
=(1,sinxcosx),設(shè)f(x)=
a
b
,x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案