分析 把原數(shù)列劃分,發(fā)現(xiàn)他們的個(gè)數(shù)是1,2,3,4,5…構(gòu)建新數(shù)列bn,很顯然是個(gè)等差數(shù)列,利用等差數(shù)列的和知道T5=$\frac{15}{2}$,T6=$\frac{21}{2}$,所以ak定在$\frac{1}{7}$,$\frac{2}{7}$,…,$\frac{6}{7}$中,在根據(jù)Sk-1<10,Sk≥10求出具體結(jié)果.
解答 解:把原數(shù)列分組,分母相同的為一組,發(fā)現(xiàn)他們的個(gè)數(shù)是1,2,3,4,5…
構(gòu)建新數(shù)列{bn},表示數(shù)列中每一組的和,則bn=$\frac{n}{2}$是個(gè)等差數(shù)列,記{bn}的前n項(xiàng)和為Tn,
利用等差數(shù)列的和知道T5=$\frac{15}{2}$,T6=$\frac{21}{2}$,
所以ak定在$\frac{1}{7}$,$\frac{2}{7}$,…,$\frac{6}{7}$中,
又因?yàn)镾k-1<10,Sk≥10,而T5+$\frac{1}{7}$+$\frac{2}{7}$+…+$\frac{5}{7}$=9+$\frac{9}{14}$<10,T5+$\frac{1}{7}$+$\frac{2}{7}$+…+$\frac{5}{7}$+$\frac{6}{7}$=10+$\frac{1}{2}$>10,
故第k項(xiàng)為ak=$\frac{6}{7}$.
故答案為$\frac{6}{7}$.
點(diǎn)評(píng) 本題目主要考查學(xué)生對(duì)數(shù)列的觀察能力,找出數(shù)列之間的相互關(guān)系,根據(jù)等差數(shù)列的前n項(xiàng)和計(jì)算公式,根據(jù)已有條件計(jì)算.考查學(xué)生的計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30種 | B. | 36種 | C. | 42種 | D. | 48種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}{n^2}{(n-1)^2}$ | B. | $\frac{1}{4}{n^2}{(n-2)^2}$ | C. | $\frac{1}{4}{n^2}{(n+1)^2}$ | D. | $\frac{1}{4}{n^2}{(n+2)^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 11 | C. | 15 | D. | 16 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com