【題目】如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB,現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)若BE=3,求幾何體BEC﹣AFD的體積;
(2)求三棱錐A﹣CDF的體積的最大值,并求此時(shí)二面角A﹣CD﹣E的正切值.
【答案】
(1)解:∵平面ABEF⊥平面EFDC,平面ABEF∩平面EFDC=EF,F(xiàn)D⊥EF,
∴FD⊥平面ABEF,又AF平面ABEF,
∴FD⊥AF,又AF⊥EF,F(xiàn)D∩EF=F,
∴AF⊥平面EFDC,
同理,CE⊥平面ABEF,
連結(jié)FC,將幾何體BEC﹣AFD分成三棱錐A﹣CDF和四棱錐C﹣ABEF,
對(duì)于三棱錐A﹣CDF,棱錐高為AF=BE=3,F(xiàn)D=5,
∴V三棱錐A﹣CDF= = =5,
對(duì)于四棱錐C﹣ABEF,棱錐高為CE=3,
∴V四棱錐C﹣ABEF= = =6,
∴幾何體BEC﹣AFD的體積V=V三棱錐A﹣CDF+V四棱錐C﹣ABEF=5+6=11
(2)解:設(shè)BE=x,∴AF=x(0<x≤6),F(xiàn)D=8﹣x,
∴V三棱錐A﹣CDF= ,
∴當(dāng)x=4時(shí),V三棱錐A﹣CDF有最大值,且最大值為 ,
在直角梯形CDEF中,EF=2,CE=2,DF=4,
∴CF=2 ,CD=2 ,DF=4,
∴CF2+CD2=DF2,∠DCF=90°,∴DC⊥CF,
又AF⊥平面EFDC,DC平面EFDC,
∴DC⊥AF,又AF∩CF=F,∴DC⊥平面ACF,∴DC⊥AC,
∴∠ACF為二面角A﹣CD﹣E的平面角,
tan = = ,
∴二面角A﹣CD﹣E的正切值為 .
【解析】(1)推導(dǎo)出FD⊥平面ABEF,從而AF⊥平面EFDC,CE⊥平面ABEF,連結(jié)FC,將幾何體BEC﹣AFD分成三棱錐A﹣CDF和四棱錐C﹣ABEF,由此能求出幾何體BEC﹣AFD的體積.(2)設(shè)BE=x,則AF=x(0<x≤6),F(xiàn)D=8﹣x,V三棱錐A﹣CDF= ,當(dāng)x=4時(shí),V三棱錐A﹣CDF有最大值,∠ACF為二面角A﹣CD﹣E的平面角,由此能求出二面角A﹣CD﹣E的正切值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 為的中點(diǎn), 在線段上,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多面體的直觀圖和三視圖如圖,M是A1B的中點(diǎn),N是棱B1C1上的任意一點(diǎn)(含頂點(diǎn)).
①當(dāng)點(diǎn)N是棱B1C1的中點(diǎn)時(shí),MN∥平面ACC1A1;
②MN⊥A1C;
③三棱錐N﹣A1BC的體積為VN﹣A BC= a3;
④點(diǎn)M是該多面體外接球的球心.
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點(diǎn)E是棱PA的中點(diǎn).
(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點(diǎn)A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:方程 =1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若命題p、q有且只有一個(gè)為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )
A. 當(dāng)時(shí),“”是“”的充要條件
B. 當(dāng)時(shí),“”是“”的充分不必要條件
C. 當(dāng)時(shí),“”是“”的必要不充分條件
D. 當(dāng)時(shí),“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單位圓O上的兩點(diǎn)A,B及單位圓所在平面上的一點(diǎn)P,滿足 =m + (m為常數(shù)).
(1)如圖,若四邊形OABP為平行四邊形,求m的值;
(2)若m=2,求| |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)設(shè)∠AOP=θ( ≤θ≤ π), = + ,四邊形OAQP的面積為S,f(θ)=( ﹣1)2+ S﹣1,求f(θ)的最值及此時(shí)θ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com