4.?dāng)?shù)列{an}前n項和${s_n}={n^2}-7n+6$.
(1)試寫出數(shù)列前4項;
(2)數(shù)列{an}是等差數(shù)列嗎?
(3)出數(shù)列{an}的通項公式.

分析 (1)利用遞推關(guān)系即可的出.
(2)由(1)可知:a2-a1≠a3-a2,即可判斷出結(jié)論.
(3)由(1)可知當(dāng)n=1時,a1=0.當(dāng)n≥2時,由an=2n-8,即可得出.

解答 解:(1)由 Sn=n2-7n+6,得a1=0,
n≥2時,an=Sn-Sn-1=n2-7n+6-[(n-1)2-7(n-1)+6]=2n-8,
∴a2=-4,a3=-2,a4=0.
(2)由(1)可知:a2-a1≠a3-a2,
∴數(shù)列{an}不是等差數(shù)列. 
(3)由(1)可知當(dāng)n=1時,a1=0.
當(dāng)n≥2時,由an=2n-8,
又n=1時不滿足上式,
所以an=$\left\{\begin{array}{l}{0,n=1}\\{2n-8,n≥2}\end{array}\right.$.

點評 本題考查了等差數(shù)列的通項公式及其性質(zhì)、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.菱形ABCD中,E,F(xiàn)分別是AD,CD中點,若∠BAD=60°,AB=2,則$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=2x+log2x,則f'(1)=2ln2+$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列關(guān)于流程圖的邏輯結(jié)構(gòu)正確的是( 。
A.選擇結(jié)構(gòu)中不含有順序結(jié)構(gòu)
B.選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)和順序結(jié)構(gòu)在流程圖中一定是并存的
C.循環(huán)結(jié)構(gòu)中一定包含選擇結(jié)構(gòu)
D.選擇結(jié)構(gòu)中一定有循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在等比數(shù)列{an}中,a4•a6=5,則a2•a3•a7•a8=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)求命題p的否定¬p;命題q的否定¬q;
(2)若¬p∨¬q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點為F1,F(xiàn)2,A點在橢圓上,離心率$\frac{\sqrt{2}}{2}$,AF2與x軸垂直,且|AF2|=$\sqrt{2}$.
(1)求橢圓的方程;
(2)若點A在第一象限,過點A作直線l,與橢圓交于另一點B,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的通項公式是an=24-2n,在下列各數(shù)中,( 。┎皇莧an}的項.
A.-2B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow a,\overrightarrow b$為非零向量,滿足$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a;({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案