分析 (I)由已知及正弦定理,二倍角的正弦函數(shù)公式可得2sinAcosA=2sinCsinA,由于sinA≠0,可得cosA=sinC,結(jié)合C為銳角,可得C的值.
(II)利用同角三角函數(shù)基本關(guān)系式可求cosA,利用余弦定理可求c,b的值,進而利用三角形面積公式即可計算得解.
解答 (本題滿分為12分)
解:(I)∵b=2csinA,由正弦定理可得:sinB=2sinCsinA,…2分
又∵B=2A,
∴sinB=sin2A=2sinAcosA=2sinCsinA,
∵sinA≠0,
∴cosA=sinC,…4分
∵C為銳角,可得C=$\frac{π}{2}$-A,…5分
∵$\left\{\begin{array}{l}{\stackrel{C=\frac{π}{2}-A}{B=2A}}\\{A+B+C=π}\end{array}\right.$,解得:C=$\frac{π}{4}$…6分
(II)∵sinA=$\frac{3}{5}$,可得:cosA=$\frac{4}{5}$,…8分
∴b=2csinA=$\frac{6}{5}$c,又a=$\sqrt{13}$,由余弦定理a2=b2+c2-2bccosA,可得:13=$\frac{36}{25}$c2+c2-2×$\frac{6}{5}$c2×$\frac{4}{5}$,解得:c=5,b=6,…10分
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×6×5×$$\frac{3}{5}$=9…12分
點評 本題主要考查了正弦定理,二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 9 | B. | -6 27 | C. | -12 9 | D. | -12 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 27 | C. | 50 | D. | 54 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com