分析 (Ⅰ)乙、丙所得分?jǐn)?shù)相等時(shí),應(yīng)為0分或10分,計(jì)算對(duì)應(yīng)的概率值即可;
(Ⅱ)根據(jù)題意,X的可能取值為0,5,10,15,20,25,30,求出對(duì)應(yīng)的概率值,寫出X的分布列,再計(jì)算數(shù)學(xué)期望值.
解答 解:(Ⅰ)乙、丙所得分?jǐn)?shù)相等時(shí),應(yīng)為0分或10分,
其概率為P=(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)+$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{1}{2}$)=$\frac{5}{18}$;
(Ⅱ)設(shè)甲、丙兩人所得分?jǐn)?shù)之和為隨機(jī)變量X,則X的可能取值為0,5,10,15,20,25,30,
其概率為P(X=0)=(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{6}$,
P(X=5)=$\frac{2}{3}$×(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{9}$,
P(X=10)=$\frac{2}{3}$×$\frac{2}{3}$×(1-$\frac{1}{2}$)+(1-$\frac{2}{3}$)×$\frac{1}{2}$×(1-$\frac{1}{2}$)=$\frac{11}{36}$,
P(X=15)=$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{18}$,
P(X=20)=$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{1}{2}$)+(1-$\frac{2}{3}$)×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{7}{36}$,
P(X=25)=$\frac{2}{3}$×(1-$\frac{2}{3}$)×$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{18}$,
P(X=30)=$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{9}$;
∴X的分布列為:
X | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
P | $\frac{1}{6}$ | $\frac{1}{9}$ | $\frac{11}{36}$ | $\frac{1}{18}$ | $\frac{7}{36}$ | $\frac{1}{18}$ | $\frac{1}{9}$ |
點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計(jì)算問題,也考查了分析與計(jì)算能力,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14,19 | B. | 14,20 | C. | 15,19 | D. | 15,20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3<k<1 | B. | k>1 | C. | -1<k<1 | D. | -1<k<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -1 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com