16.把a(bǔ),b,c,d排成形如$({\begin{array}{l}a&b\\ c&d\end{array}})$的式子,稱為二行二列矩陣,定義矩陣的一種運(yùn)算該$({\begin{array}{l}a&b\\ c&d\end{array}}).({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}ax+by\\ cx+dy\end{array}})$,運(yùn)算的幾何意義為:平面上的點(diǎn)(x,y)在矩陣$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下變換成點(diǎn)(ax+by,cx+dy).
(1)求點(diǎn)(2,3)在$({\begin{array}{l}0&1\\ 1&0\end{array}})$的作用下形成的點(diǎn)的坐標(biāo).
(2)若曲線x2+4xy+2y2=1在矩陣$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下變成曲線x2-2y2=1,求a+b的值.

分析 (1)$({\begin{array}{l}0&1\\ 1&0\end{array}})({\begin{array}{l}2\\ 3\end{array}})=({\begin{array}{l}3\\ 2\end{array}})$,即可得出結(jié)論;
(2)在曲線x2+4xy+2y2=1上任取一點(diǎn)(m,n),則$({\begin{array}{l}1&a\\ b&1\end{array}})({\begin{array}{l}m\\ n\end{array}})=({\begin{array}{l}m+an\\ bm+n\end{array}})$,將(m+an,bm+n)代入x2-2y2=1,由此能求出a,b的值.

解答 解:(1)$({\begin{array}{l}0&1\\ 1&0\end{array}})({\begin{array}{l}2\\ 3\end{array}})=({\begin{array}{l}3\\ 2\end{array}})$,所以點(diǎn)(2,3)在$({\begin{array}{l}0&1\\ 1&0\end{array}})$的作用下變成點(diǎn)(3,2).
(2)在曲線x2+4xy+2y2=1上任取一點(diǎn)(m,n),
則$({\begin{array}{l}1&a\\ b&1\end{array}})({\begin{array}{l}m\\ n\end{array}})=({\begin{array}{l}m+an\\ bm+n\end{array}})$,將(m+an,bm+n)代入x2-2y2=1,
得(m+an)2-2(bm+n)2=1,
即(1-2b2)m2+2(a-2b)mn+(a2-2)n2=1.
又點(diǎn)(m,n)在曲線x2+4xy+2y2=1上,所以m2+4mn+2n2=1.
前面兩個(gè)式子對(duì)照,由待定系數(shù)法可知:$\left\{\begin{array}{l}1-2{b^2}=1\\ 2(a-2b)=4\\{a^2}-2=2\end{array}\right.$,
解得$\left\{{\begin{array}{l}a=2\\ b=0\end{array}}\right.$,所以a+b=2.

點(diǎn)評(píng) 本題以矩陣為載體,考查矩陣的乘法,考查矩陣變換的應(yīng)用.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.y=$\frac{1-{e}^{x}}{1+{e}^{x}}$的導(dǎo)數(shù)為$\frac{-2{e}^{x}}{(1+{e}^{x})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合U=[-5,4],A={x∈R|-3≤2x+1<1},B={x∈R|x2-2x≤0},則(∁UA)∩B=(  )
A.B.[-2,0)C.[0,2]D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高一某班的某次數(shù)學(xué)測(cè)試成績(jī)(滿分為100分)的莖葉圖和頻率分布直方圖都受了不同程度的破壞,但可見部分,如圖,據(jù)此解答下列問題:

(1)求分?jǐn)?shù)在[50,60]的頻率及全班人數(shù);
(2)求分?jǐn)?shù)在[80,90]之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90]間的矩形的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以(1,-1)為圓心且與直線x+2=0相切的圓的方程為(  )
A.(x-1)2+(y+1)2=9B.(x-1)2+(y+1)2=3C.(x+1)2+(y-1)2=9D.(x+1)2+(y-1)2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級(jí),0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~250為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄2017年某地某月10天的AQI的莖葉圖如圖.
(1)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良(AQI≤100)的天數(shù);
(按這個(gè)月總共30天計(jì)算)
(2)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量?jī)?yōu)良的天數(shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出以下命題:
①若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$同向共線;
②函數(shù)f(x)=cos(sinx)的最小正周期為π;
③在△ABC中,|$\overrightarrow{AC}$|=3,|$\overrightarrow{BC}$|=4,|$\overrightarrow{AB}$|=5,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=16;
④函數(shù)f(x)=tan(2x-$\frac{π}{3}$)的一個(gè)對(duì)稱中心為($\frac{5π}{12}$,0);
其中正確命題的序號(hào)為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若在甲袋內(nèi)裝有8個(gè)白球、4個(gè)紅球,在乙袋內(nèi)裝有6個(gè)白球、5個(gè)紅球,現(xiàn)從兩袋內(nèi)各任意取出1個(gè)球,設(shè)取出的白球個(gè)數(shù)為X,則下列概率中等于$\frac{{C}_{8}^{1}{C}_{5}^{1}+{C}_{4}^{1}{C}_{6}^{1}}{{C}_{12}^{1}{C}_{11}^{1}}$的是( 。
A.P(X=0)B.P(X≤2)C.P(X=1)D.P(X=2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx+bx2的圖象在點(diǎn)(1,f(1))處的切線方程為x-y-1=0,g(x)=2af(x+t),t∈R且t≤2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求證:g(x)<ex+f(x+t).

查看答案和解析>>

同步練習(xí)冊(cè)答案