11.以(1,-1)為圓心且與直線x+2=0相切的圓的方程為( 。
A.(x-1)2+(y+1)2=9B.(x-1)2+(y+1)2=3C.(x+1)2+(y-1)2=9D.(x+1)2+(y-1)2=3

分析 根據(jù)題意,分析可得圓心到直線x+2=0就是圓的半徑r,計算可得r的值,將圓心坐標(biāo)以及半徑r代入圓的標(biāo)準(zhǔn)方程即可得答案.

解答 解:根據(jù)題意,設(shè)圓心為C,即C(1,-1),
C到直線x+2=0就是圓的半徑r,則r=|1-(-2)|=3;
故圓的標(biāo)準(zhǔn)方程為:(x-1)2+(y+1)2=9;
故選:A.

點評 本題考查圓的標(biāo)準(zhǔn)方程,關(guān)鍵是求出圓的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且僅有2個子集,則a的取值構(gòu)成的集合為{0,1,-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過拋物線$y=\frac{1}{4}{x^2}$的焦點F作一條傾斜角為30°的直線交拋物線于A、B兩點,則|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$\overrightarrow{a}$=(2,-3),則與向量$\overrightarrow{a}$垂直的單位向量的坐標(biāo)為(  )
A.(3,2)B.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)
C.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)或(-$\frac{3\sqrt{13}}{13}$,-$\frac{2\sqrt{13}}{13}$)D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在四面體ABCD中,AB,AC,AD兩兩互相垂直,給出下列兩個命題:
①$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$•$\overrightarrow{BD}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$,
②($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$)2=$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+$\overrightarrow{AD}$2
則下列關(guān)于以上兩個命題的真假性判斷正確的為(  )
A.①真、②真B.①真、②假C.①假、②假D.①假、②真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.把a,b,c,d排成形如$({\begin{array}{l}a&b\\ c&d\end{array}})$的式子,稱為二行二列矩陣,定義矩陣的一種運算該$({\begin{array}{l}a&b\\ c&d\end{array}}).({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}ax+by\\ cx+dy\end{array}})$,運算的幾何意義為:平面上的點(x,y)在矩陣$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下變換成點(ax+by,cx+dy).
(1)求點(2,3)在$({\begin{array}{l}0&1\\ 1&0\end{array}})$的作用下形成的點的坐標(biāo).
(2)若曲線x2+4xy+2y2=1在矩陣$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下變成曲線x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線2x2-y2=8的實軸長是(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知非負實數(shù)a,b,c滿足ab+bc+ca=1,求證:$\frac{1}{a+b}$$+\frac{1}{b+c}$$+\frac{1}{c+a}$$≥\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線C1的極坐標(biāo)方程為ρ=R(R>0),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}α}\\{y=si{n}^{2}α}\end{array}\right.$(α為參數(shù)),若C1與C2有公共點,則R的取值范圍是( 。
A.[2,+∞)B.[$\sqrt{2}$,+∞)C.[2,$\sqrt{10}$]D.[2,3]

查看答案和解析>>

同步練習(xí)冊答案