4.已知等差數(shù)列{an}為各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,若a1=1,$\sqrt{{S}_{3}}$=a2,則a8=(  )
A.12B.13C.14D.15

分析 利用條件求出等差數(shù)列的公差,即可得出結(jié)論.

解答 解:由題意,$\sqrt{3+3d}$=1+d,∴(d+1)(d-2)=0,
∵d>0,∴d=2,
∴a8=1+7d=15,
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知{an}為等差數(shù)列,若a1=6,a3+a5=0,則數(shù)列{an}的通項(xiàng)公式為an=8-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.甲、乙兩家外賣(mài)公司,其單個(gè)送餐員的日工資方案如下:甲公司底薪70元,每單提成2元;乙公司無(wú)底薪,40單以內(nèi)(含40 單)的部分每單提成4元,超出40 單的部分每單提成6元.假設(shè)同一公司的送餐員同一天的送餐單數(shù)相同,現(xiàn)從兩家公司各抽取一名送餐員,分別記錄其100天的送餐單數(shù),得到如下頻數(shù)分布表:
甲公司被選取送餐員送餐單數(shù)頻數(shù)分布表
送餐單數(shù) 3839404142
天數(shù)2040201010
乙公司被選取送餐員送餐單數(shù)頻數(shù)分布表
送餐單數(shù) 3839404142
天數(shù)1020204010
將其頻率作為概率,請(qǐng)回答以下問(wèn)題:
(1)若記乙公司單個(gè)送餐員日工資為X元,求X的分布列和數(shù)學(xué)期望;
(2)小明將要去其中一家公司應(yīng)聘送餐員,若甲公司承諾根據(jù)每位送餐員的表現(xiàn),每個(gè)季度將會(huì)增加300元至600元不等的獎(jiǎng)金,如果每年按300個(gè)工作日計(jì)算,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,去哪一家公司的經(jīng)濟(jì)收入可能會(huì)多一些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足z2=3-4i,則z的模是( 。
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.拋物線y2=2px(p>0)與過(guò)焦點(diǎn)且垂直于其對(duì)稱軸的直線所圍成的封閉圖形面積是6,則p=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線的中心在原點(diǎn)O,左焦點(diǎn)為F1,圓O過(guò)點(diǎn)F1,且與雙曲線的一個(gè)交點(diǎn)為P,若直線PF1的斜率為$\frac{1}{3}$,則雙曲線的漸近線方程為( 。
A.y=±xB.y=±$\frac{\sqrt{6}}{3}$xC.y=±$\frac{\sqrt{6}}{4}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某公司未來(lái)對(duì)一種新產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)x(元)456789
銷(xiāo)量y(件)908483807568
由表中數(shù)據(jù),求得線性回歸方程為$\hat y=-4x+\hat a$,當(dāng)產(chǎn)品銷(xiāo)量為76件時(shí),產(chǎn)品定價(jià)大致為7.5元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x+y的最小值為( 。
A.-8B.-2C.8D.$\frac{44}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虛數(shù)單位)是純虛數(shù).”是“θ=$\frac{π}{6}$+2kπ”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案