10.函數(shù)$f(x)=\frac{2}{x}$的單調(diào)遞減區(qū)間為(  )
A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

分析 先確定函數(shù)的定義域,進而利用導數(shù)法分析可得函數(shù)的單調(diào)遞減區(qū)間.

解答 解:函數(shù)$f(x)=\frac{2}{x}$的定義域為(-∞,0)∪(0,+∞),
且$f′(x)=-\frac{2}{{x}^{2}}$,
當x∈(-∞,0),或x∈(0,+∞)時,f′(x)<0均恒成立,
故函數(shù)$f(x)=\frac{2}{x}$的單調(diào)遞減區(qū)間為(-∞,0),(0,+∞),
故選:C

點評 梧本題考查的知識點是利用導數(shù)研究函數(shù)的單調(diào)性,熟練掌握反比例函數(shù)的圖象和性質(zhì),是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.在下列區(qū)間中,函數(shù)f(x)=lnx+x-3的零點所在的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設函數(shù)f(x)=-|x|,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{-{x}^{2}+4x}$的值域是(  )
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{1,x=0}\end{array}}$,若關于x的方程f2(x)+af(x)+b=0有9個不同的實數(shù)根.   
(1)求a+b的值;    
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點P是橢圓16x2+25y2=1600上一點,且在x軸上方,F(xiàn)1,F(xiàn)2是橢圓的左,右焦點,直線PF2的斜率為$-4\sqrt{3}$.
(1)求P點的坐標;
(2)求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,下,目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則$\frac{5}{a}+\frac{1}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在棱長為1的正方體ABCD-A1B1C1D1中,點P是正方體棱上一點(不包括棱的端點),若滿足|PA|+|PC1|=m的點P的個數(shù)為6,則m的取值范圍是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.2015年春晚上,有一種旋轉(zhuǎn)舞臺燈,其外形呈正四棱柱,每個側(cè)面上安裝了5只不同的彩燈,每只彩燈發(fā)光的概率為$\frac{1}{2}$,若每個側(cè)面上至少3只彩燈正常發(fā)光,則該側(cè)面不需要維修,否則需要維修.
(Ⅰ)求恰有兩個側(cè)面需要維修的概率;
(Ⅱ)設四個側(cè)面的維修費分別為100元、100元、200元、200元,記需要維修的費用為X,求X的分布列及期望.

查看答案和解析>>

同步練習冊答案