A. | (-∞,+∞) | B. | (-∞,0)∪(0,+∞) | C. | (-∞,0),(0,+∞) | D. | (0,+∞) |
分析 先確定函數(shù)的定義域,進而利用導數(shù)法分析可得函數(shù)的單調(diào)遞減區(qū)間.
解答 解:函數(shù)$f(x)=\frac{2}{x}$的定義域為(-∞,0)∪(0,+∞),
且$f′(x)=-\frac{2}{{x}^{2}}$,
當x∈(-∞,0),或x∈(0,+∞)時,f′(x)<0均恒成立,
故函數(shù)$f(x)=\frac{2}{x}$的單調(diào)遞減區(qū)間為(-∞,0),(0,+∞),
故選:C
點評 梧本題考查的知識點是利用導數(shù)研究函數(shù)的單調(diào)性,熟練掌握反比例函數(shù)的圖象和性質(zhì),是解答的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,2] | C. | [0,2] | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com