【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)B坐標(biāo)為(0, ),問是否存在過點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足 (O為坐標(biāo)原點(diǎn))?若存在,求出此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ) +y2=1(Ⅱ)y=x+或y=-x+.
【解析】試題分析:(Ⅰ)根據(jù)題意可以知道: ()2=2·c ,橢圓的離心率可得a=,即可求得a和b的值,即可求得橢圓方程;
(Ⅱ)設(shè)直線MN的方程,代入橢圓方程,由韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得k的值,直線l的方程.
試題解析:(Ⅰ)( )2=2·c,解得c=1.
又e′==,及a2=b2+c2,解得a=,b=1.
所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1.
(Ⅱ)若直線l過點(diǎn)B(0, ).
當(dāng)直線l的斜率不存在時(shí),顯然不符合題意;
故直線l的斜率存在,設(shè)為k,則直線l的方程為y-=kx,即y=kx+.
聯(lián)立方程組消去y,得(1+2k2)x2+4kx+2=0.
顯然Δ=(4k)2-4(1+2k2)×2>0,
解得k>或k<-.(*)
設(shè)點(diǎn)M(x1,y1),N(x2,y2),
則x1+x2=,x1x2=.
由,得=0,則x1x2+y1y2=0.
即+(kx1+)(kx2+)=0,得+k2x1x2+k(x1+x2)+2=0,
得+k2·+k+2=0,
化簡(jiǎn)得=0,解得k=±.符合(*)式,
此時(shí)直線l的方程為y=x+或y=-x+.
故存在過點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足,
此時(shí)直線l的方程為y=x+或y=-x+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是線段BC上一點(diǎn),直線BC與平面ABD所成角為30°,CE∥平面ADF.
(1)試確定F的位置;
(2)求三棱錐A-CDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn).
求證:(1)E、C、D1、F四點(diǎn)共面;
(2)CE、D1F、DA三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-1,過定點(diǎn)M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點(diǎn),E是M點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),若直線AE和BE的斜率分別為k1,k2,則k1+k2=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系xOy中,射線l:y=x(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. 曲線C3的極坐標(biāo)方程為ρ=8sin θ.
(Ⅰ)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;
(Ⅱ)已知射線l與C2交于O,M,與C3交于O,N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=a·b的圖象關(guān)于直線對(duì)稱,求函數(shù)f(2x)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn,且3an+Sn=4(n∈N*).
(1)證明:{an}是等比數(shù)列;
(2)在an和an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)成等差數(shù)列.記插入的n個(gè)數(shù)的和為Tn,求Tn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (θ為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為ρsin(θ+)=t(其中t為常數(shù)).
(Ⅰ)若曲線N與曲線M只有一個(gè)公共點(diǎn),求t的值;
(Ⅱ)當(dāng)t=-1時(shí),求曲線M上的點(diǎn)與曲線N上的點(diǎn)的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856266)[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f+2m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com