【題目】已知命題實數滿足 ;命題實數滿足.
(1)當時,若“且”為真,求實數的取值范圍;
(2)若“非”是“非”的必要不充分條件,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】某公司生產的某種時令商品每件成本為元,經過市場調研發(fā)現,這種商品在未來天內的日銷售量(件)與時間(天)的關系如下表所示.
時間/天 | 1 | 3 | 6 | 10 | 36 | …… |
日銷售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未來40天內,前20天每天的價格(元/件)與時間(天)的函數關系式為 ,且為整數),后20天每天的價格(元/件)與時間(天)的函數關系式為,且為整數).
(Ⅰ)認真分析表格中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定一個滿足這些數據(件)與 (天)的關系式;
(Ⅱ)試預測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?
(Ⅲ)在實際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈元利潤給希望工程. 公司通過銷售記錄發(fā)現,前 20 天中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20 000元,每生產一臺儀器需要增加投入100元,已知總收益滿足函數:R(x)=其中x是儀器的月產量.當月產量為何值時,公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面是正方形,側面底面,且,分別為的中點.
(1)求證:平面;
(2)在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2-4|x|-5.
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)設A={x|f(x)≥7},求集合A;
(Ⅲ)方程f(x)=k+1有兩解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗.為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,結果如下表:記成績不低于70分者為“成績優(yōu)良”.
分數 | |||||
甲班頻數 | 5 | 6 | 4 | 4 | 1 |
一般頻數 | 1 | 3 | 6 | 5 | 5 |
(1)由以下統(tǒng)計數據填寫下面列聯表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認為“成績優(yōu)良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現從上述40人中,學校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數為,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,,且點在直線上.
⑴求數列的通項公式;
⑵若函數(,且),求函數的最小值;
⑶設,表示數列的前項和,試問:是否存在關于的整式,使得對于一切不小于2的自然數恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com