分析 原命題等價(jià)于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍.
解答 解:原命題即f(x)≤|x-4|在[1,2]上恒成立,等價(jià)于|x+a|+2-x≤4-x在[1,2]上恒成立,
等價(jià)于|x+a|≤2,等價(jià)于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故當(dāng) 1≤x≤2時(shí),-2-x的最大值為-2-1=-3,2-x的最小值為0,
故a的取值范圍為[-3,0].
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,關(guān)鍵是去掉絕對(duì)值,化為與之等價(jià)的不等式來解,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{18}$ | B. | $\frac{1}{6}$ | C. | $\frac{13}{22}$ | D. | $\frac{3}{22}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | x-y-4=0 | C. | x+y-2=0 | D. | x+y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com