14.設(shè)△AnBnCn的三邊長(zhǎng)分別為an,bn,cn,n=1,2,3,…,若b1>c1,b1+c1=2a1,an+1=an,${b_{n+1}}=\frac{{{a_n}+{c_n}}}{2}$,${c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,則∠An的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 根據(jù)數(shù)列的遞推關(guān)系得到bn+cn=2a1為常數(shù),然后利用余弦定理以及基本不等式即可得到結(jié)論.

解答 解:∵an+1=an,∴an=a1,
∵${b_{n+1}}=\frac{{{a_n}+{c_n}}}{2}$,${c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,
∴bn+1+cn+1=an+$\frac{_{n}+{c}_{n}}{2}$=a1+$\frac{_{n}+{c}_{n}}{2}$,
∴bn+1+cn+1-2a1=$\frac{1}{2}$(bn+cn-2a1),
又b1+c1=2a1,
∴當(dāng)n=1時(shí),b2+c2-2a1=$\frac{1}{2}$(b1+c1+-2a1)=0,
當(dāng)n=2時(shí),b3+c3-2a1=$\frac{1}{2}$(b2+c2+-2a1)=0,

∴bn+cn-2a1=0,
即bn+cn=2a1為常數(shù),
∵bn-cn=(-$\frac{1}{2}$)n-1(b1-c1),
∴當(dāng)n→+∞時(shí),bn-cn→0,即bn→cn,
則由基本不等式可得bn+cn=2a1≥2$\sqrt{_{n}{c}_{n}}$,
∴bncn≤(a1)2,
由余弦定理可得${a}_{n}^{2}$=$_{n}^{2}+{c}_{n}^{2}$-2bncncosAn=(bn+cn2-2bncn-2bncncosAn,
即(a12=(2a12-2bncn(1+cosAn),
即2bncn(1+cosAn)=3(a12≤2(a12(1+cosAn),
即3≤2(1+cosAn),
解得cosAn≥$\frac{1}{2}$,
∴0<An≤$\frac{π}{3}$,
即∠An的最大值是$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查數(shù)列以及余弦定理的應(yīng)用,利用基本不等式是解決本題的關(guān)鍵,綜合性較強(qiáng),運(yùn)算量較大,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=2×4n-2,n∈N*
(I)求數(shù)列{an}的通項(xiàng)公式an;
(II)設(shè)數(shù)列{bn}滿足bn=log2an,求Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$的表達(dá)式(用含n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列函數(shù)①y=xcosx②y=sin2x③y=|x2-x|④y=ex-e-x,其中是奇函數(shù)的是( 。
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)P(-1,$\frac{3}{2}$)是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)已知圓O:x2+y2=r2(0<r<b),直線l與圓O相切,與橢圓相交于A、B兩點(diǎn),若$\overrightarrow{OA}•\overrightarrow{OB}=0$,求圓O的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在正三棱錐內(nèi)有一半球,其底面與正三棱錐的底面在同一平面內(nèi),正三棱錐的三個(gè)側(cè)面都和半球相切.如果半球的半徑等于1,正三棱錐的底面邊長(zhǎng)為$3\sqrt{2}$,則正三棱錐的高等于(  )
A.$\sqrt{2}$B.$2\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線E:x2=2py(p>0),其焦點(diǎn)為F,過F且斜率為1的直線被拋物線截得的弦長(zhǎng)為8.
(1)求拋物線E的方程;
(2)設(shè)A為E上一動(dòng)點(diǎn)(異于原點(diǎn)),E在點(diǎn)A處的切線交x軸于點(diǎn)P,原點(diǎn)O關(guān)于直線PF的對(duì)稱點(diǎn)為點(diǎn)B,直線AB與y軸交于點(diǎn)C,求△OBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.a(chǎn)=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,則(ax+$\frac{1}{2ax}$)9展開式中,x3項(xiàng)的系數(shù)為( 。
A.-$\frac{21}{2}$B.-$\frac{63}{8}$C.$\frac{63}{8}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=u(x)、y=v(x)都是定義在R上的連續(xù)函數(shù),若max{a,b}表示a,b中較大的數(shù),則對(duì)于下列命題:
(1)如果y=u(x)、y=v(x)都是奇函數(shù),則f(x)=max{u(x),v(x)}是奇函數(shù);
(2)如果y=u(x)、y=v(x)都是偶函數(shù),則f(x)=max{u(x),v(x)}是偶函數(shù);
(3)如果y=u(x)、y=v(x)都是增函數(shù),則f(x)=max{u(x),v(x)}是增函數(shù);
(4)如果y=u(x)、y=v(x)都是減函數(shù),則f(x)=max{u(x),v(x)}是減函數(shù);
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.圓O1:(x-1)2+(y-2)2=2,圓O2:(x-2)2+(y-3)2=2相交.求:
(1)相交圖形的外圍周長(zhǎng);
(2)相交圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案