A. | $f'({\frac{2ab}{a+b}})<f'({\frac{a+b}{2}})<f'({\sqrt{ab}})$ | B. | $f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})<f'({\frac{a+b}{2}})$ | ||
C. | $f'({\frac{a+b}{2}})<f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})$ | D. | $f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$ |
分析 由基本不等式可得$\frac{2ab}{a+b}<\sqrt{ab}<\frac{a+b}{2}$,再由函數(shù)f(x)的圖象得到f'(x)的單調(diào)性,則答案可求.
解答 解:∵b>a>0,
∴$\frac{a+b}{2}>\sqrt{ab}$>0,
則$\frac{1}{\sqrt{ab}}>\frac{2}{a+b}$,兩邊同時乘以ab,得$\frac{ab}{\sqrt{ab}}>\frac{2ab}{a+b}$,即$\sqrt{ab}>\frac{2ab}{a+b}$.
∴$\frac{2ab}{a+b}<\sqrt{ab}<\frac{a+b}{2}$.
∵函數(shù)f(x)的圖象是上凸型,由導數(shù)的幾何意義可知,f′(x)為定義域上的減函數(shù),
則$f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$.
故選:D.
點評 本題考查利用導數(shù)研究函數(shù)的單調(diào)性,考查導數(shù)的幾何意義,訓練了利用基本不等式進行大小比較,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $-\frac{1}{6}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\sqrt{3}$,2] | B. | [1,2] | C. | (0,2] | D. | ($\frac{\sqrt{3}}{2}$,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${a_n}=\frac{1}{n(n-1)}$ | B. | ${a_n}=\frac{1}{2n(2n-1)}$ | C. | ${a_n}=\frac{1}{n}-\frac{1}{n+1}$ | D. | ${a_n}=1-\frac{1}{n}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com