5.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,則$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范圍是[0,2].

分析 畫出約束條件的可行域,化簡(jiǎn)目標(biāo)函數(shù),轉(zhuǎn)化為直線的斜率問(wèn)題,通過(guò)函數(shù)的值域求解目標(biāo)函數(shù)的范圍即可.

解答 解:約束條件的可行域如圖:由$\left\{\begin{array}{l}{x+y=0}\\{x+3y=3}\end{array}\right.$可得A(-$\frac{3}{2}$,$\frac{3}{2}$),
$\left\{\begin{array}{l}{x-y=0}\\{x+3y=3}\end{array}\right.$可得B($\frac{3}{4}$,$\frac{3}{4}$),
則$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2}{\frac{y}{x}+\frac{x}{y}}}$,由題意可得$\frac{y}{x}$∈[-1,1],令t=$\frac{y}{x}$∈[-1,1],則$\frac{y}{x}+\frac{x}{y}$=t+$\frac{1}{t}$∈[2,+∞)∪(-∞,-2],
∴$\sqrt{1+\frac{2}{\frac{y}{x}+\frac{x}{y}}}$∈[0,2].
故答案為:[0,2].

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查數(shù)形結(jié)合以及函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是( 。
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,程序輸出的結(jié)果s=1320,則判斷框中應(yīng)填( 。
A.i≥10?B.i<10?C.i≥11?D.i<11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)={(\frac{1}{3})^x}-{log_2}$x,正實(shí)數(shù)a,b,c是公差為負(fù)數(shù)的等差數(shù)列,且滿足f(a)•f(b)•f(c)<0,若實(shí)數(shù)d是方程f(x)=0的一個(gè)解,那么下列四個(gè)判斷:①d<a;②d<b;③d>c;④d<c中一定成立的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)P(0,1),離心率為$\frac{{\sqrt{2}}}{2}$,動(dòng)點(diǎn)M(2,m)(m>0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.中國(guó)詩(shī)詞大會(huì)的播出引發(fā)了全民的讀書熱,某小學(xué)語(yǔ)文老師在班里開(kāi)展了一次詩(shī)詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學(xué)生得到“詩(shī)詞達(dá)人”的稱號(hào),小于85分且不小于70分的學(xué)生得到“詩(shī)詞能手”的稱號(hào),其他學(xué)生得到“詩(shī)詞愛(ài)好者”的稱號(hào),根據(jù)該次比賽的成就按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩(shī)詞能手”稱號(hào)的人數(shù)為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知(1-2x)n(n∈N*)的展開(kāi)式中第3項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,則展開(kāi)式中所有項(xiàng)的系數(shù)和為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(2,-4),$\overrightarrow$=(-3,m),若|$\overrightarrow{a}$||$\overrightarrow$|+$\overrightarrow{a}$•$\overrightarrow$=0,則實(shí)數(shù)m=( 。
A.-6B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知z1=1-3i,z2=3+i,其中i是虛數(shù)單位,則$\frac{{\overline{z_1}}}{z_2}$的虛部為(  )
A.-1B.$\frac{4}{5}$C.-iD.$\frac{4}{5}i$

查看答案和解析>>

同步練習(xí)冊(cè)答案