精英家教網 > 高中數學 > 題目詳情
4.已知某運動員每次投籃命中的概率都為40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( 。
A.0.40B.0.35C.0.30D.0.25

分析 由題意知模擬三次投籃的結果,經隨機模擬產生了如下20組隨機數,在20組隨機數中表示三次投籃恰有兩次命中的有可以通過列舉得到共5組隨機數,根據概率公式,得到結果.

解答 解:由題意知模擬三次投籃的結果,經隨機模擬產生了如下20組隨機數,
在20組隨機數中表示三次投籃恰有兩次命中的有:137、271、932、812、431、393、.
共6組隨機數,
∴所求概率為$\frac{6}{20}$=0.3,
故選:C.

點評 本題考查模擬方法估計概率,是一個基礎題,解這種題目的主要依據是等可能事件的概率,注意列舉法在本題的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.f(x)是定義在R上的奇函數,且f(x-3)=f(x+3),當0<x<3時,f(x)=2-log2(x+2),則當0<x<6時,不等式(x-3)f(x)>0的解集是( 。
A.(0,2)∪(3,4)B.(0,2)∪(4,5)C.(2,3)∪(4,5)D.(2,3)∪(3,4)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知函數f(x)=$\left\{\begin{array}{l}{x+4,(x≤-1)}\\{{x}^{2},(-1<x<1)}\\{2x,(x≥1)}\end{array}\right.$,若f(m)=$\frac{1}{2}$,則m所有可能值的和為(  )
A.-$\frac{7}{2}$B.2C.-$\frac{13}{4}$D.0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,已知側棱與底面垂直,∠CAB=90°,且AC=1,AB=2,E為BB1的中點,M為AC上的一點,$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$.
(Ⅰ)證明:CB1∥平面A1EM;
(Ⅱ)若A1A的長度為$\sqrt{2}$,求三棱錐E-C1A1M的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}-2x({x≤0})\\{(\frac{1}{2})^x}+1({x>0})\end{array}$.
(1)畫出函數f(x)的圖象,并根據圖象寫出函數f(x)的單調區(qū)間和值域;
(2)根據圖象求不等式f(x)≥$\frac{3}{2}$的解集(寫答案即可)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知A(-1,0),B(0,2),動點P(x,y),S△PAB=S.
(1)若l∥AB,且l與AB的距離為$\frac{2\sqrt{5}}{5}$,求l的方程;
(2)若x∈[0,2],y∈[0,2],求S≤1的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知函數f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,若關于的方程f(x)=a恰有3個不同的實數解x1、x2、x3,則x1+x2+x3的取值范圍是(  )
A.(-∞,0)B.(0,1)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=|x-2|+|x+1|.
(1)求不等式f(x)>7的解集;
(2)若實數m,n>0,且f(x)的最小值為m+n,求m2+n2的最小值,并指出此時m,n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.△ABC中sin2A+3sinAcosA-1=0,A是銳角.
(1)求tan2A的值;
(2)若cosB=$\frac{2\sqrt{5}}{5}$,c=$\sqrt{10}$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案