【題目】點(diǎn)分別是正方體的棱的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號(hào)).

①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;②點(diǎn)在直線上運(yùn)動(dòng)時(shí),總有;③點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積的定值;④若點(diǎn)是正方體的面內(nèi)的一動(dòng)點(diǎn),且到點(diǎn)距離相等,則點(diǎn)的軌跡是一條線段.

【答案】②③④

【解析】

以三棱錐為例判斷;根據(jù)棱錐的體積公式判斷;根據(jù)平面判斷,根據(jù)平面判斷

以三棱錐為例(如圖(1)),則此三棱錐的4個(gè)面均為直角三角形,故①錯(cuò)誤;

, 過點(diǎn)、的截面為矩形

, 平面,當(dāng)在直線上運(yùn)動(dòng)時(shí),平面,

,故正確;

當(dāng)在直線上運(yùn)動(dòng)時(shí),的面積為定值(如圖(2)),到平面的距離為定值, 的體積是定值,故正確;

連接,則平面的軌跡是線段,故正確.

故答案為:②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南濮陽市高三一模已知點(diǎn)在拋物線 是拋物線上異于的兩點(diǎn),以為直徑的圓過點(diǎn)

I證明:直線過定點(diǎn);

II過點(diǎn)作直線的垂線,求垂足的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程是是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求圓心的直角坐標(biāo);

(Ⅱ)由直線上的點(diǎn)向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形是邊長為2的菱形,平面平面,, .

(1)當(dāng)長為多少時(shí),平面平面?

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線兩點(diǎn),交圓兩點(diǎn),在第一象限,在第四象限.

(1)求拋物線的方程;

(2)是否存在直線使的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)已知的解集為,求實(shí)數(shù)的值;

2)已知,設(shè)、是關(guān)于的方程的兩根,且,求實(shí)數(shù)的值;

3)已知滿足,且關(guān)于的方程的兩實(shí)數(shù)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,AB=2AD,為DC的中點(diǎn),將△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)當(dāng)AB=2時(shí),求三棱錐的體積;

(2)求證:BM⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案