12.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)的單調(diào)遞減區(qū)間是[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得圖象對(duì)應(yīng)的解析式,再利用正弦函數(shù)的單調(diào)性,求得所得圖象對(duì)應(yīng)的函數(shù)的單調(diào)遞減區(qū)間.

解答 解:將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到y(tǒng)=3sin(2x-$\frac{π}{3}$+$\frac{π}{3}$)=3sin2x的圖象,
令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
可得所得圖象對(duì)應(yīng)的函數(shù)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z,
故答案為:[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求經(jīng)過A(-2,3),B(4,-1)的兩點(diǎn)式方程,并把它化成點(diǎn)斜式、斜截式、截距式和一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,且點(diǎn)$({1,\frac{{\sqrt{3}}}{2}})$在橢圓C上.
(1)求橢圓C的方程;
(2)斜率為1的直線l過橢圓的右焦點(diǎn),交橢圓于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y2=2px(p>0)的準(zhǔn)線與圓(x-3)2+y2=16相切,則該拋物線的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=5cos(ωx+φ)對(duì)任意x都有f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),則f($\frac{π}{6}$)的值為( 。
A.0B.5C.-5D.±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)0$\sqrt{2}$-$\sqrt{2}$0
(Ⅰ)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=|x-1|-1(x∈{0,1,2,3}),則其值域?yàn)椋ā 。?table class="qanwser">A.{0,1,2,3}B.{-1,0,1}C.{y|-1≤y≤1}D.{y|0≤y≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,2Sn=3an-2n(n∈N+).
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+2n+1,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<$\frac{1}{2}-\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=a-x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-2,-1]B.[-1,1]C.[1,3]D.[3,+∞]

查看答案和解析>>

同步練習(xí)冊(cè)答案