9.已知數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N*,且{an}中任意兩項之和也是該數(shù)列中的一項.若${a_1}={6^m}$,其中m為給定的正整數(shù),則d的所有可能取值的和為$\frac{1}{2}({{2^{m+1}}-1})({{3^{m+1}}-1})$.

分析 由公差d是${a}_{1}={6}^{m}$的約數(shù),得到d=2i•3j,(i,j=0,1,2,…,m),由此能求出d的所有可能取值之和.

解答 解:∵數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N*,且{an}中任意兩項之和也是該數(shù)列中的一項,
∴公差d是${a}_{1}={6}^{m}$的約數(shù),
∴d=2i•3j,(i,j=0,1,2,…,m),
∴d的所有可能取值之和為:
$\sum_{i=0}^{m}{2}^{i}•\sum_{j=0}^{m}{3}^{j}$=$\frac{1}{2}({{2^{m+1}}-1})({{3^{m+1}}-1})$.
故答案為:$\frac{1}{2}({{2^{m+1}}-1})({{3^{m+1}}-1})$.

點評 本題考查等差數(shù)列的公差的所有可能取值之和的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={x|y=$\sqrt{x}$},B={x|x2-x>0},則A∩B=( 。
A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{{e}^{x}}{x}$的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overline{a}$,$\overline$滿足$\overrightarrow{a}$•$\overrightarrow$=8,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,則|2$\overrightarrow{a}$-$\overrightarrow$|等于(  )
A.5B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足:對于?m,n∈N*,都有an•am=an+m,且${a_1}=\frac{1}{2}$,那么a5=( 。
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=xex-a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立.
①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.將一枚硬幣連續(xù)拋擲n次,若使得至少有一次正面向上的概率不小于$\frac{15}{16}$,則n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知過點(-2,0)的直線與圓O:x2+y2-4x=0相切與點P(P在第一象限內(nèi)),則過點P且與直線$\sqrt{3}$x-y=0垂直的直線l的方程為( 。
A.x+$\sqrt{3}$y-2=0B.x+$\sqrt{3}$y-4=0C.$\sqrt{3}$x+y-2=0D.x+$\sqrt{3}$y-6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知m是直線,α,β是兩個互相垂直的平面,則“m∥α”是“m⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案