【題目】在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行統(tǒng)計(jì),如下表:

幾何證

明選講

極坐標(biāo)與

參數(shù)方程

不等式

選講

合計(jì)

男同學(xué)

12

4

6

22

女同學(xué)

0

8

12

20

合計(jì)

12

12

18

42

(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和極坐標(biāo)與參數(shù)方程稱(chēng)為“幾何類(lèi)”,把不等式選講稱(chēng)為“代數(shù)類(lèi)”,我們可以得到如下2×2列聯(lián)表.

幾何類(lèi)

代數(shù)類(lèi)

合計(jì)

男同學(xué)

16

6

22

女同學(xué)

8

12

20

合計(jì)

24

18

42

能否認(rèn)為選做“幾何類(lèi)”或“代數(shù)類(lèi)”與性別有關(guān),若有關(guān),你有多大的把握?

(2)在原始統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名學(xué)委和2名數(shù)學(xué)課代表都在選做“不等式選講”的同學(xué)中.

①求在這名學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率;

②記抽取到數(shù)學(xué)課代表的人數(shù)為,求的分布列及數(shù)學(xué)期望

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)答案見(jiàn)解析;(2)①.;②.答案見(jiàn)解析.

【解析】分析:(1)由題意知K2的觀測(cè)值k≈4.582>3.841,則有95%的把握認(rèn)為選做幾何類(lèi)代數(shù)類(lèi)與性別有關(guān).

(2)①由題意結(jié)合條件概率計(jì)算公式可知在學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率為;

②由題意知X的可能取值為0,1,2.由超幾何分布計(jì)算相應(yīng)的概率值可得其分布列,然后計(jì)算其數(shù)學(xué)期望為E(X)=.

詳解:(1)由題意知K2的觀測(cè)值k≈4.582>3.841,

所以有95%的把握認(rèn)為選做幾何類(lèi)代數(shù)類(lèi)與性別有關(guān).

(2)①由題可知在選做不等式選講18名學(xué)生中,要選取3名同學(xué),

令事件A這名學(xué)委被選中,事件B兩名數(shù)學(xué)課代表被選中”,

,

,

②由題意知X的可能取值為0,1,2.

依題意P(X=0)=,P(X=1)=P(X=2)=,

則其分布列為:

所以E(X)=0×+1×+2×.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)內(nèi)汽車(chē)市場(chǎng)中,國(guó)產(chǎn)SUV出現(xiàn)了持續(xù)不退的銷(xiāo)售熱潮,2018年國(guó)產(chǎn)SUV銷(xiāo)量排行榜完整版已經(jīng)出爐,某品牌車(chē)型以驚人的銷(xiāo)量成績(jī)擊退了所有虎視眈眈的對(duì)手,再次霸氣登頂,下面是該品牌國(guó)產(chǎn)SUV分別在2017年與2018711月份的銷(xiāo)售量對(duì)比表

時(shí)間

7

8

9

10

11

2017年(單位:萬(wàn)輛)

2.8

3.9

3.5

4.4

5.4

2018年(單位:萬(wàn)輛)

3.8

3.9

4.5

4.9

5.4

(Ⅰ)若從7月至11月中任選兩個(gè)月份,求至少有一個(gè)月份這兩年該國(guó)產(chǎn)品牌SUV銷(xiāo)量相同的概率。

(Ⅱ)分別求這兩年7月至11月的銷(xiāo)售數(shù)據(jù)的平均數(shù),并直接判斷哪年的銷(xiāo)售量比較穩(wěn)定。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的解析式滿(mǎn)足

1)求函數(shù)的解析式;

2)若在區(qū)間(1,+∞)單調(diào)遞增,求的取值范圍(只需寫(xiě)出范圍,不用說(shuō)明理由)。

3)當(dāng)時(shí),記函數(shù),求函數(shù)gx)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.

(1)求f(x)的解析式;

(2)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心;

(3)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍成的三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)酒杯的軸截面是一條拋物線的一部分,它的方程是x2=2y,y∈[0,10],在杯內(nèi)放入一個(gè)清潔球,要求清潔球能擦凈酒杯的最底部(如圖),則清潔球的最大半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面命題中,正確的命題有(  )

①若n1,n2分別是不同平面α,β的法向量,n1n2αβ;

②若n1,n2分別是平面α,β的法向量,αβn1·n2=0;

③若n是平面α的法向量,b,cα內(nèi)兩個(gè)不共線的向量,abc(λ,μR),n·a=0;

④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;
(3)若點(diǎn)M的橫坐標(biāo)為 ,直線l:y=kx+ 與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng) ≤k≤2時(shí),|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)在區(qū)間上的最小值記為

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;

2)求的函數(shù)表達(dá)式;

3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過(guò)程中,已經(jīng)得到f1)<0,f1.5)>0f1.25)<0,則方程的根落在區(qū)間( 。

A. B. C. D. 不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案