分析 (Ⅰ)根據(jù)三角函數(shù)的倍角公式以及輔助角公式將函數(shù)進(jìn)行化簡(jiǎn)即可.
(Ⅱ)求出角的取值范圍,結(jié)合三角函數(shù)的最值性質(zhì)進(jìn)行判斷求解即可.
解答 解:(Ⅰ)因?yàn)閒(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1
=sin2ωxcos$\frac{π}{6}$-cos2ωxsin$\frac{π}{6}$+cos2ωx=$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$cos2ωx=sin(2ωx+$\frac{π}{6}$),
所以f(x)的最小正周期T=$\frac{2π}{2ω}=π$,
解得ω=1.
(Ⅱ)由(Ⅰ)得 f(x)=sin(2x+$\frac{π}{6}$),
因?yàn)?≤x≤$\frac{7π}{12}$,所以$\frac{π}{6}$≤2x+$\frac{π}{6}$≤$\frac{4π}{3}$,
所以,當(dāng)2x+$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{6}$時(shí),f(x)取得最大值為1;
當(dāng)2x+$\frac{π}{6}$=$\frac{4π}{3}$,即x=$\frac{7π}{12}$時(shí),f(x)取得最小值為-$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | $\frac{10}{3}$ | C. | 2 | D. | $-\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=cos2x | B. | y=lg|x| | C. | y=-x | D. | y=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | $0<\frac{a}<1$ | C. | ab>b2 | D. | $\frac{a}>\frac{a}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com