3.已知函數(shù)f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集為$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

分析 (1)問(wèn)題轉(zhuǎn)化為|x+1|+|x-1|≥4,去絕對(duì)值,求出不等式的解集即可;
(2)求出不等式的解集,根據(jù)對(duì)應(yīng)關(guān)系求出a的值,根據(jù)基本不等式的性質(zhì)求出mn的最小值即可.

解答 解:(1)函數(shù)f(x)=|x-a|,
當(dāng)a=1,不等式為f(x)≥4-|x+1|?|x+1|+|x-1|≥4,
去絕對(duì)值,解得:x≥2或x≤-2,
原不等式的解集為(-∞,-2]∪[2,+∞);
(2)f(x)≤1的解集為[0,2],?|x-a|≤1?a-1≤x≤a+1,
∵f(x)≤1的解集為[0,2],
∴$\left\{\begin{array}{l}a-1=0\\ a+1=2\end{array}\right.⇒a=1$,
∴$\frac{1}{m}+\frac{1}{2n}=1≥2\sqrt{\frac{1}{2mn}}(m>0,n>0)$,
∴mn≥2,(當(dāng)且僅當(dāng)$\frac{1}{m}=\frac{1}{2n}=\frac{1}{2}$即m=2,n=1時(shí)取等號(hào)),
∴mn的最小值為2.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查基本不等式的性質(zhì),考查對(duì)應(yīng)思想以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在梯形ABCD中,AB∥DC,AD=AB=BC=1,$∠ADC=\frac{π}{3}$,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=1,點(diǎn)M在線段EF上.
(1)當(dāng)$\frac{FM}{EM}$為何值時(shí),AM∥平面BDF?證明你的結(jié)論;
(2)求三棱錐E-BDF的體積VE-BDF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z滿足$\frac{2i}{z}=1-i$,則z=( 。
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知在數(shù)列{an}中,a1=1,其前n項(xiàng)和為sn,且${a_n}=\frac{2s_n^2}{{2{s_n}-1}}$(n≥2)
(1)證明$\left\{{\frac{1}{s_n}}\right\}$是等差數(shù)列,并求數(shù)列$\left\{{\frac{1}{s_n}}\right\}$的前n項(xiàng)和Pn
(2)若${b_n}=\frac{s_n}{2n+1}+\frac{2^n}{s_n}$求數(shù)列的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知$\overrightarrow m=({1,3}),\overrightarrow n=({2,t}),({\overrightarrow m+\overrightarrow n})⊥({\overrightarrow m-\overrightarrow n})$,則t=±$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ 2x-y≥1\\ 2x+5y-1≥0\end{array}\right.$,則2x-3y的最大值為( 。
A.-1B.1C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD,E,F(xiàn)分別為PD,BC的中點(diǎn).
(1)求證:AE⊥PC;
(2)G為線段PD上一點(diǎn),若FG∥平面AEC,求$\frac{PG}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.把編號(hào)為1,2,3,4,5,6,7的7張電影票分給甲、乙、丙、丁、戊五個(gè)人,每人至少一張,至多分兩張,且分得的兩張票必須是連號(hào),那么不同分法種數(shù)為1200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|x2-6x+8≤0},B={1,2,3,4,5},則陰影部分所表示的集合的元素個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案