8.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ 2x-y≥1\\ 2x+5y-1≥0\end{array}\right.$,則2x-3y的最大值為( 。
A.-1B.1C.7D.9

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.

解答 解:設(shè)z=2x-3y得y=$\frac{2}{3}x-\frac{z}{3}$,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{2}{3}x-\frac{z}{3}$,由圖象可知當(dāng)直線y=$\frac{2}{3}x-\frac{z}{3}$,
過點(diǎn)B時(shí),直線y=$\frac{2}{3}x-\frac{z}{3}$截距最小,此時(shí)z最大,
由$\left\{\begin{array}{l}{x+y=2}\\{2x+5y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,即B(3,-1),
此時(shí)z=2×3-3×(-1)=6+3=9,
∴目標(biāo)函數(shù)z=2x-3y最大值是9.
故選D.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z滿足$\frac{11+2i}{z}$=1+2i(i為虛數(shù)單位),則z的虛部為( 。
A.4B.4iC.-4D.-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R)的兩個(gè)零點(diǎn)為x1,x2,若|x1|+|x2|≤2,則( 。
A.|a|≥1B.b≤1C.|a+2b|≥2D.|a+2b|≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“|a|>|b|”是“l(fā)na>lnb”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集為$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y={sin^2}({\frac{3π}{2}-x})+sin({x+π})$的值域?yàn)閇-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,則$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是( 。
A.f(x)=-x|x|B.f(x)=xsinxC.$f(x)=\frac{1}{x}$D.$f(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.國(guó)內(nèi)某知名連鎖店分店開張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參加抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)開業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),y表示開業(yè)第x天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(Ⅰ)若從這7天隨機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過10的概率;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

同步練習(xí)冊(cè)答案