19.已知數(shù)列{an}滿足${a_0}=\frac{1}{3}$,${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$(n=1,2,3…),${b_n}=2{a_n}^2-{a_n}$,Sn=b1+b2+…+bn
證明:(Ⅰ)an-1<an<1(n≥1);
(Ⅱ)$0<{S_n}<n-\frac{1}{2}$(n≥2).

分析 (Ⅰ)由${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$得:${a_{n-1}}=2{a_n}^2-1$.可得顯然an>0,$1-{a_{n-1}}=2-2{a_n}^2=2(1-{a_n}^2)=2(1+{a_n})(1-{a_n})$,故1-an與1-an-1同號,又$1-{a_0}=1-\frac{1}{3}=\frac{2}{3}>0$,可得an<1.可得  an-1-an=(2an+1)(an-1)<0,即an-1<an
(Ⅱ)由已知可得:${b_n}=2{a_n}^2-{a_n}={a_{n-1}}-{a_n}+1$,由0<an-1<an<1⇒an-1-an+1>0,
從而bn=an-1-an+1>0,于是,Sn=b1+b2+…+bn>0.由(Ⅰ)有1-an-1=2(1+an)(1-an),可得$\frac{{1-{a_n}}}{{1-{a_{n-1}}}}=\frac{1}{{2(1+{a_n})}}$$<\frac{1}{2}$,可得$1-{a_n}<\frac{1}{2}(1-{a_{n-1}})<{({\frac{1}{2}})^2}(1-{a_{n-2}})<…<{({\frac{1}{2}})^n}(1-{a_0})=\frac{2}{3}•\frac{1}{2^n}$,求和即可證明.

解答 證明:(Ⅰ)由${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$得:${a_{n-1}}=2{a_n}^2-1$(*)
顯然an>0,(*)式⇒$1-{a_{n-1}}=2-2{a_n}^2=2(1-{a_n}^2)=2(1+{a_n})(1-{a_n})$
故1-an與1-an-1同號,又$1-{a_0}=1-\frac{1}{3}=\frac{2}{3}>0$,
所以1-an>0,即an<1…(3分)
(注意:也可以用數(shù)學歸納法證明)
所以  an-1-an=(2an+1)(an-1)<0,即an-1<an
所以   an-1<an<1(n≥1)…(6分)
(Ⅱ)(*)式⇒${b_n}=2{a_n}^2-{a_n}={a_{n-1}}-{a_n}+1$,
由0<an-1<an<1⇒an-1-an+1>0,
從而bn=an-1-an+1>0,于是,Sn=b1+b2+…+bn>0,…(9分)
由(Ⅰ)有1-an-1=2(1+an)(1-an)⇒$\frac{{1-{a_n}}}{{1-{a_{n-1}}}}=\frac{1}{{2(1+{a_n})}}$$<\frac{1}{2}$,
所以$1-{a_n}<\frac{1}{2}(1-{a_{n-1}})<{({\frac{1}{2}})^2}(1-{a_{n-2}})<…<{({\frac{1}{2}})^n}(1-{a_0})=\frac{2}{3}•\frac{1}{2^n}$(**)…(11分)
所以Sn=b1+b2+…+bn=(a0-a1+1)+(a1-a2+1)+…(an-1-an+1)=${a_0}-{a_n}+n=\frac{1}{3}+n-{a_n}$…(12分)
=$-\frac{2}{3}+n+(1-{a_n})<-\frac{2}{3}+n+\frac{2}{3}•\frac{1}{2^n}$$≤-\frac{2}{3}+n+\frac{2}{3}•\frac{1}{2^2}=n-\frac{1}{2}$…(14分)
∴$0<{S_n}<n-\frac{1}{2}$(n≥2)成立…(15分)

點評 本題考查了數(shù)列遞推關系、等比數(shù)列的定義通項公式與求和公式、數(shù)列遞推關系、放縮法、不等式的性質(zhì),考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}為等比數(shù)列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an;
(Ⅱ)若數(shù)列{bn}滿足,bn+1=bn+an,b1=a2,求b5=?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x+1}{{x}^{2}+a}$(a>0).
(1)若f(x)在(1,f(1))處的切線方程為x+2y+b=0,求a+b的值;
(2)若f(x)在區(qū)間[1,+∞)上的最大值為$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C的圓心為原點,且與截直線$x+y+2\sqrt{6}=0$所得弦長等于圓的半徑.
(1)求圓C的半徑;
(2)點P在直線x=8上,過P點引圓C的兩條切線PA,PB,切點為A,B,是否存在定點M使得直線AB恒過定點?若存在,求出定點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設$\overrightarrow{a}$,$\overrightarrow$是兩個非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow$,則x的值為( 。
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$\overrightarrow a$=(2,1),
(1)如果|$\overrightarrow b$|=$2\sqrt{5}$,且向量$\overrightarrow a$與$\overrightarrow b$共線,求$\overrightarrow b$的坐標表示;
(2)如果|$\overrightarrow b$|=$2\sqrt{10}$,且向量$\overrightarrow a$與$\overrightarrow b$夾角為$\frac{3π}{4}$,求$\overrightarrow b$的坐標表示.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知曲線${C_1}:{y^2}=tx(y>0,t>0)$在點$M(\frac{4}{t},2)$處的切線${C_2}:y={e^{x+1}}+1$與曲線也相切,則t的值為( 。
A.4eB.4e2C.$\frac{e^2}{4}$D.$\frac{e}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.從1到9的九個數(shù)字中取三個偶數(shù)四個奇數(shù)組成沒有重復數(shù)字的七位數(shù),試問:
(1)三個偶數(shù)排在一起的有幾個?
(2)偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?
(3)任意兩偶然都不相鄰的七位數(shù)有幾個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知0<x≤3,則$y=x+\frac{16}{x}$的最小值為( 。
A.$\frac{25}{3}$B.16C.20D.10

查看答案和解析>>

同步練習冊答案