20.已知向量$\overrightarrow{a}$、$\overrightarrow$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=$2\sqrt{3}$,|$\overrightarrow{a}$+$\overrightarrow$|•|$\overrightarrow{a}$-$\overrightarrow$|的值是$\sqrt{21}$.

分析 根據(jù)$|\overrightarrow{a}|=2,|\overrightarrow|=1$及$<\overrightarrow{a},\overrightarrow>=\frac{π}{3}$便可求出$(\overrightarrow{a}+2\overrightarrow)^{2}$,以及$(\overrightarrow{a}+\overrightarrow)^{2},(\overrightarrow{a}-\overrightarrow)^{2}$的值,從而求出$|\overrightarrow{a}+2\overrightarrow|$及$|\overrightarrow{a}+\overrightarrow|•|\overrightarrow{a}-\overrightarrow|$的值.

解答 解:$(\overrightarrow{a}+2\overrightarrow)^{2}={\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$
=$4+4×2×1×\frac{1}{2}+4$
=12;
$(\overrightarrow{a}+\overrightarrow)^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=$4+2×2×1×\frac{1}{2}+1=7$,
$(\overrightarrow{a}-\overrightarrow)^{2}={\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=$4-2×2×1×\frac{1}{2}+1=3$;
∴$|\overrightarrow{a}+2\overrightarrow|=2\sqrt{3}$,$|\overrightarrow{a}+\overrightarrow|=\sqrt{7},|\overrightarrow{a}-\overrightarrow|=\sqrt{3}$;
∴$|\overrightarrow{a}+\overrightarrow||\overrightarrow{a}-\overrightarrow|=\sqrt{21}$.
故答案為:$2\sqrt{3}$,$\sqrt{21}$.

點(diǎn)評(píng) 考查數(shù)量積的運(yùn)算及計(jì)算公式,要求$|\overrightarrow{a}+2\overrightarrow|$而求$(\overrightarrow{a}+2\overrightarrow)^{2}$的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象關(guān)于直線x=$\frac{π}{16}$對(duì)稱且f(-$\frac{π}{16}$)=0,如果存在實(shí)數(shù)x0,使得對(duì)任意的x都有f(x0)≤f(x)≤f(x0+$\frac{π}{4}$),則ω的最小值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)數(shù)列{an}前n項(xiàng)和為Sn,如果${a_1}=\frac{6}{7},{a_n}=\frac{{3{S_n}}}{n+3}({n∈{N_+}})$那么a48=350.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.有一段演繹推理:“直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,且圓${C_2}:{x^2}+{y^2}=4$經(jīng)過橢圓C1短軸的兩個(gè)端點(diǎn),C,D是圓C2上兩個(gè)動(dòng)點(diǎn),直線CD交橢圓C1于A,B兩點(diǎn).
(1)求橢圓C1的方程;
(2)當(dāng)$|{CD}|=2\sqrt{3}$時(shí),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)幾何體的三視圖,則它的體積為( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.2$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.實(shí)數(shù)k為何值時(shí),復(fù)數(shù)z=(k2-3k-4)+(k2-5k-6)i是:(1)實(shí)數(shù);(2)虛數(shù);(3)純虛數(shù);(4)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=cos2x-sin x的最大值是$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列實(shí)際問題:
①一種藥物對(duì)某種病的治愈率;
②兩種藥物治療同一種病是否有關(guān)系;
③吸煙者得肺病的概率;      
④吸煙人群是否與性別有關(guān)系;
⑤上網(wǎng)與青少年的犯罪率是否有關(guān)系.
其中,用獨(dú)立性檢驗(yàn)可以解決的問題有②④⑤.

查看答案和解析>>

同步練習(xí)冊(cè)答案