9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2,Sn,an成等差數(shù)列,則S17=( 。
A.0B.2C.-2D.34

分析 推導(dǎo)出${a}_{n}=\left\{\begin{array}{l}{2,n是奇數(shù)}\\{-2,n是偶數(shù)}\end{array}\right.$,由此能求出S17

解答 解:∵數(shù)列{an}的前n項(xiàng)和為Sn,且2,Sn,an成等差數(shù)列,
∴2S1=2+a1,即2a1=2+a1,解得a1=2,
2S2=2+a2,即2(2+a2)=2+a2,
解得a2=-2,
2S3=2+a3,即2(2-2+a3)=2+a3,
解得a3=2,
2S4=2+a4,即2(2-2+2+a4)=2+a4,
解得a4=-2,

${a}_{n}=\left\{\begin{array}{l}{2,n是奇數(shù)}\\{-2,n是偶數(shù)}\end{array}\right.$,
S17=2-2+2-2+2-2+2-2+2-2+2-2+2-2+2-2+2=2.
故選:B.

點(diǎn)評(píng) 本題考查數(shù)列的前17項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an},a1=1且點(diǎn)(an,an+1)在函數(shù)y=2x+1的圖象上,則a4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=m(x+1)2ln(x+1)+[f′(e-1)-3e]x,其中x>-1,曲線y=f(x)在點(diǎn)(0,0)處的切線方程為y=0
(Ⅰ)求f(x)的解析式
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)≥x2
(Ⅲ)若當(dāng)x≥0時(shí),f(x)≥ax2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD=$\sqrt{7}$,直線PC與平面ABCD所成角的正切為$\frac{1}{2}$.
(1)設(shè)E為直線PC上任意一點(diǎn),求證:AE⊥BD;
(2)求二面角B-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸入的a=5,則輸出的結(jié)果是( 。
A.$\frac{15}{16}$B.$\frac{31}{16}$C.$\frac{31}{32}$D.$\frac{63}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線${x^2}-\frac{y^2}{2}=1$的漸近線方程為y=$±\sqrt{2}x$;離心率等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a∈R,i為虛數(shù)單位,則“a=1”是“復(fù)數(shù)(a-1)(a+2)+(a+3)i為純虛數(shù)”的(  )
A.充要條件B.必要非充分條件
C.充分非必要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在銳角△ABC中,設(shè)角A,B,C所對(duì)邊分別為a,b,c,bsinCcosA-4csinAcosB=0.
(1)求證:tanB=4tanA;
(2)若tan(A+B)=-3,a=$\sqrt{10}$,b=5,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,an+1=$\frac{2n+3}{n}$Sn(n∈N*).
(1)證明:數(shù)列{$\frac{{S}_{n}}{n}$}是等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案