20.函數(shù)f(x)=ax3+bx2+cx+d(a≠0)在(-∞,+∞)上是減少的,則下列各式中成立的是( 。
A.a>0,b2+3ac≥0B.a>0,b2-3ac≤0C.a<0,b2+3ac≥0D.a<0,b2-3ac≤0

分析 求出導函數(shù),利用函數(shù)的單調(diào)性,列出不等式推出結(jié)果即可.

解答 解:f′(x)=3ax2+2bx+c(a≠0).
∵函數(shù)為減少的,則f′(x)≤0恒成立.
∴a<0且△=4b2-12ac≤0,即b2-3ac≤0.
故選:D.

點評 本題考查函數(shù)的單調(diào)性的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知sinα是方程5x2-7x-6=0的根,求:
(1)$\frac{cos(2π-α)cos(π+α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}+α)sin(2π-α)co{t}^{2}(π-α)}$的值.
(2)在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,AC=2,AB=3,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設有一個線性回歸方程$\stackrel{∧}{y}$=3-5x,變量x增加1個單位時,y平均增加5個單位;
③設具有相關關系的兩個變量x,y的相關系數(shù)為r,則|r|越接近于0,x和y之間的線性相關程度越強;
④在一個2×2列聯(lián)表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關聯(lián)的把握就越大.
其中錯誤的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.數(shù)列{an}滿足(-1)nan-an-1=2n,n≥2,則{an}的前100項和為( 。
A.-4750B.4850C.-5000D.4750

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)當a=b=1時,求函數(shù)f(x)的最大值;
(2)當b=1,a≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=0,b=-4時,方程x2+2mf(x)=0有唯一解,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設全集U=R,集合A=$\left\{{x||{x-a}|<1}\right\},B=\left\{{x|\frac{x+1}{x-2}≤2}\right\}$.
(1)求集合B;
(2)若A⊆(∁UB),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(Ⅰ)比較(x+1)(x-3)與(x+2)(x-4)的大。
(Ⅱ)一段長為36m的籬笆圍成一個矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大.最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設α,β是一個鈍角三角形的兩個銳角,下列四個不等式中的正確的個數(shù)是( 。
(1)cosα>sinβ
(2)$sinα+sinβ<\sqrt{2}$
(3)cosα+cosβ>1
(4)$\frac{1}{2}tan({α+β})<tan\frac{α+β}{2}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案