12.已知t∈R,若復(fù)數(shù)$z=\frac{1-ti}{1+i}$(i為虛數(shù)單位)為純虛數(shù),則$|{\sqrt{3}+ti}|$=( 。
A.2B.4C.6D.8

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義、模的計(jì)算公式即可得出.

解答 解:復(fù)數(shù)$z=\frac{1-ti}{1+i}$=$\frac{(1-ti)(1-i)}{(1+i)(1-i)}$=$\frac{1-t}{2}$+$\frac{-t-1}{2}$i為純虛數(shù),
∴$\frac{1-t}{2}$=0,$\frac{-t-1}{2}$≠0,
解得t=1.
則$|{\sqrt{3}+ti}|$=|$\sqrt{3}$+i|=$\sqrt{(\sqrt{3})^{2}+{1}^{2}}$=2.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=1+sin2x得最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若數(shù)列{an}滿足:a1=2,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,則a7等于( 。
A.2B.$\frac{1}{2}$C.-1D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱AA1,B1C1,C1D1,DD1的中點(diǎn),則GH與平面EFH所成角的余弦值為$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$sinαsin(α+\frac{π}{2})=\frac{{\sqrt{2}}}{3}$,則cos2α=$±\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點(diǎn)M(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)N在直線PQ上,且滿足$\overrightarrow{MP}•\overrightarrow{PN}=0,\overrightarrow{PN}=\frac{1}{2}\overrightarrow{NQ}$.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;
(Ⅱ)過點(diǎn)$T({-\frac{1}{2},0})$做直線l與軌跡C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0,0),使得△AEB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.曲線y=$\frac{1}{4}{x^2}$在點(diǎn)(2,1)處的切線與x軸、y軸圍成的封閉圖形的面積為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中${a_n}={({-1})^{\frac{{n({n+1})}}{2}}}({2n-1})$,設(shè){an}的前n項(xiàng)和為Sn,則S101的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若復(fù)數(shù)$\frac{a+3i}{1+2i}$(a∈R,i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為( 。
A.-6B.13C.$\frac{3}{2}$D.$\sqrt{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案