16.有一個(gè)不透明的袋子,裝有三個(gè)形狀完全相同的小球,球上分別編有數(shù)字1,2,3.
(Ⅰ)若逐個(gè)不放回的取兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3 整除的概率;
(Ⅱ)若有放回的取兩次,編號(hào)依次為a,b,求直線ax+by+1=0與圓x2+y2=$\frac{1}{9}$有公共點(diǎn)的概率.

分析 (Ⅰ)列舉可得共有6個(gè)基本事件,數(shù)出所求的事件A包含的基本事件共1個(gè),由概率公式可得故P(A);
(Ⅱ)列舉可得基本事件共9個(gè),設(shè)“直線ax+by+1=0與圓x2+y2=$\frac{1}{9}$有公共點(diǎn)”為事件B,由題意可得a2+b2≥9,可得符合條件的基本事件共5個(gè),可得答案.

解答 解:(Ⅰ)用(a,b)表示先后兩次取球構(gòu)成的基本事件,
共有6個(gè)基本事件:(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),
記“第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除”為事件A,
則A包含的基本事件有:(2,1)共1個(gè),故P(A)=$\frac{1}{6}$;
(Ⅱ)總的基本事件有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9個(gè),
設(shè)“直線ax+by+1=0與圓x2+y2=$\frac{1}{9}$有公共點(diǎn)”為事件B,
由題意可知$\frac{1}{\sqrt{{a}^{2}+^{2}}}$≤$\frac{1}{3}$,即a2+b2≥9,
則事件B包含的基本事件有:(1,3),(2,3),(3,1),(3,2),(3,3),共5個(gè),
故P(B)=$\frac{5}{9}$.

點(diǎn)評(píng) 本題考查古典概型及其概率公式,列舉是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知單位向量$\overrightarrow{a}$,$\overrightarrow$夾角為銳角,對(duì)t∈R,|$\overrightarrow{a}$-t$\overrightarrow$|的取值范圍是[$\frac{\sqrt{3}}{2}$,+∞),若向量$\overrightarrow{c}$滿(mǎn)足($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則|$\overrightarrow{c}$|的最小值為$\frac{\sqrt{7}-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$,
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow{q}$=(1,0),且$\overrightarrow{n}$與$\overrightarrow{q}$的夾角為$\frac{π}{2}$,$\overrightarrow{p}$=(cosA,1+cosC),其中A、B、C為△ABC的內(nèi)角,A、B、C依次成等差數(shù)列,求|$\overrightarrow{n}$+$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=x3-3x2的極小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則f(-$\frac{3π}{4}$)=( 。
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,4),B(0,-2),C(-2,3),
(1)求BC邊上的中線與BC邊上的高所在的直線方程
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.甲、乙兩人做“石頭、剪刀、布”游戲,兩人平局的概率為(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在一個(gè)邊長(zhǎng)為5cm的正方形內(nèi)部畫(huà)一個(gè)邊長(zhǎng)為2cm的正方形,向大正方形內(nèi)隨機(jī)投點(diǎn),則所投的點(diǎn)落入小正方形內(nèi)的概率是$\frac{4}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn):sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$cos2α•cos2β.

查看答案和解析>>

同步練習(xí)冊(cè)答案