19.5個人排成一列,其中甲不排在末位,且甲、乙兩人不能相鄰,則滿足條件的所有排列有( 。
A.18種B.36種C.48種D.54種

分析 分類討論,利用排列知識求解即可.

解答 解:若甲排在第一位,則乙可能排在第三、四或五位有3種可能,其余三人任意排列,有3A33種排列;
若甲排在第二位,則乙可能排在第四或五位有2種可能,其余三人任意排列,有2A33種排列;
若甲排在第三位,則乙可能排在第一或五位有2種可能,其余三人任意排列,有2A33種排列;
若甲排在第四位,則乙可能排在第一或二位有2種可能,其余三人任意排列,有2A33種排列.
綜上可得,滿足條件的所有不同的排列有(3+3×2)A33=54種,
故選:D.

點評 本題考查排列知識的運用,考查分類討論的數(shù)學思想,正確分類討論是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.將曲線$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1按φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$變換后的曲線的參數(shù)方程為(θ為參數(shù))( 。
A.$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$B.$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$
C.$\left\{\begin{array}{l}{x=\frac{1}{3}cosθ}\\{y=\frac{1}{2}sinθ}\end{array}\right.$D.$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{3}cosθ}\\{y=\frac{\sqrt{2}}{2}sinθ}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.$n=\overline{ab}$表示一個兩位數(shù),記f(n)=a+b+a×b,如f(12)=1+2+1×2=5,則滿足f(n)=n的兩位數(shù)共有9個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)全集U=R,設(shè)集合A=$\left\{{x\left|{y=\frac{1}{{\sqrt{{{log}_2}x-1}}}}\right.}\right\}$,設(shè)集合B={x|x2-3x≤0}
(1)求出集合A與B;   
(2)求(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.2016屆高三某次聯(lián)考之后,某中學的數(shù)學教師對A班和B班共n名學生的數(shù)學成績進行了統(tǒng)計(滿分150分),得到如下各分數(shù)段內(nèi)的男生人數(shù)統(tǒng)計表和各個分數(shù)段人數(shù)的頻率分布直方圖.

 組數(shù) 分組 男生 占本組的頻率
 第一組[80,90) 12 0.6
 第二組[90,100) 10 p
 第三組[100,110) 10 0.5
 第四組[110,120) a 0.4
 第五組[120,130) 3 0.3
 第六組[130,140] 6 0.6
(1)求n,a,p的值和頻率分布直方圖中第二組矩形的高;
(2)分數(shù)在[130,140]的男生中,A班有4人,從這6個男生中任選2人進行學習經(jīng)驗交流,求取到2人中至少一名是B班男生的概率;
(3)若110分(含110分)以上為優(yōu)秀.
(i)完成下面的2×2列聯(lián)表,并求出男生和女生的優(yōu)秀率;
          成績
性別
 優(yōu)秀不優(yōu)秀  總計
 男生   
 女生   
 總計   
(ii)根據(jù)上面表格的數(shù)據(jù),判斷是否有90%以上的把握認為“數(shù)學成績與性別有關(guān)”?
附表及公式:
 P(K2≥k) 0.1000.050 0.010 0.001 
 k 2.706 3.841 6.63510.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在(x2+$\frac{4}{x^2}$-4)3(x+3)的展開式中,常數(shù)項是( 。
A.-480B.-240C.480D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=(m+nx)3=a0+a1x+a2x2+a3x3,mn≠0,則$\frac{{{a_0}{a_3}}}{{{a_1}{a_2}}}$的值為(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且最小正周期為2,若0≤x≤1時,f(x)=x,則f(-1)+f(-2017)=( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若正數(shù)x,y滿足$\frac{1}{x}+\frac{1}{y}$=1,則$\frac{1}{x-1}+\frac{3}{y-1}$的最小值為2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案