精英家教網 > 高中數學 > 題目詳情

【題目】某社區(qū)組織“學習強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,34組抽取的人數依次為(

A.1,3,4B.23,3C.2,2,4D.11,6

【答案】C

【解析】

根據頻率分布直方圖可得第2,34組中頻數之比,結合分層抽樣的特點可得人數.

由圖可知第234組的頻率之比為0.15:0.15:0.3,所以頻數之比為1:1:2,

現采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,所以第2,3,4組抽取的人數依次為2,2,4.

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,,,平面平面,點上,且


(Ⅰ)證明:平面平面

(Ⅱ)當異面直線所成角的余弦值為時,求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數處取得極大值或極小值,則稱為函數的極值點.已知函數.

1)當時,求的極值;

2)若在區(qū)間上有且只有一個極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖是某地51日至15日日平均溫度變化的折線圖,日平均溫度高于20度低于27度時適宜戶外活動,某人隨機選擇51日至514日中的某一天到達該地停留兩天(包括到達當日).

1)求這15天日平均溫度的極差和均值;

(2)求此人停留期間只有一天的日平均溫度適宜戶外活動的概率;

(3)由折線圖判斷從哪天開始連續(xù)三天日平均溫度的方差最大?(寫出結論,不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗.

方式二:混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若不是陽性,檢驗一次就夠了,如果檢驗結果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數總共為.

假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.現取其中份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.

1)若,試求關于的函數關系式

2)若與干擾素計量相關,其中是不同的正實數,滿足都有成立.

(。┣笞C:數列為等比數列;

(ⅱ)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數的期望值更少,求的最大值.

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數在區(qū)間上的最值;

2)若,且對任意恒成立,求的最大值(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:

①它們的高相等;②它們的內切球半徑相等;③它們的側棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】分別為橢圓的左、右焦點,點在橢圓上,且點關于點對稱.

)求橢圓的方程;

)過右焦點的直線與橢圓相交于兩點,過點且平行于的直線與橢圓交于另一點,問是否存在直線,使得四邊形的對角線互相平分?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補隊員組成的代表隊參加比賽.

1)如果隨機抽派5名隊員上場比賽,將主力隊員參加比賽的人數記為,求隨機變量的數學期望;

2)若主力隊員中有2名隊員在練習比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?

查看答案和解析>>

同步練習冊答案