3.設f(x)=$\left\{\begin{array}{l}{(x-a)^2},x≤0\\ x+\frac{1}{x}+a+4,x>0\end{array}$,若f(0)是f(x)的最小值,則a的取值范圍為( 。
A.[-2,3]B.[-2,0]C.[1,3]D.[0,3]

分析 由分段函數(shù)可得當x=0時,f(0)=a2,由于f(0)是f(x)的最小值,則(-∞,0]為減區(qū)間,即有a≥0,則有a2≤x+$\frac{1}{x}$+a+4,x>0恒成立,運用基本不等式,即可得到右邊的最小值2+a,解不等式a2≤2+a,即可得到a的取值范圍

解答 解:由于f(x)=$\left\{\begin{array}{l}{(x-a)^2},x≤0\\ x+\frac{1}{x}+a+4,x>0\end{array}$,
則當x=0時,f(0)=a2,
由于f(0)是f(x)的最小值,
則(-∞,0]為減區(qū)間,即有a≥0,
則有a2≤x+$\frac{1}{x}$+a+4,x>0恒成立,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,當且僅當x=1取最小值2,
則a2≤6+a,解得-2≤a≤3.
綜上,a的取值范圍為[0,3].
故選:D.

點評 本題考查分段函數(shù)的應用:求最值,考查函數(shù)的單調(diào)性及運用,同時考查基本不等式的應用,是一道中檔題,也是易錯題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.某幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知角α為第四象限角,且$cosα=\frac{1}{3}$,則sinα=-$\frac{2\sqrt{2}}{3}$;tan(π-α)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={0,1,2},若A∩∁ZB=∅(Z是整數(shù)集合),則集合B可以為( 。
A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.若數(shù)列{an}的前n項和Sn滿足:Sn=2an-2,記bn=log2an
(1)求數(shù)列{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=$\frac{b_n}{a_n}$,它的前n項和為Tn,求Tn;
(3)求證:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足b=c,$\frac{a}$=$\frac{1-cosB}{cosA}$,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2,OB=1,則平面四邊形OACB面積的最大值是( 。
A.$\frac{4+5\sqrt{3}}{4}$B.$\frac{8+5\sqrt{3}}{4}$C.3D.$\frac{4+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,M(xM,yM),N(xN,yN)分別是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與兩條直線l1:y=m(A≥m≥0),l2:y=-m的兩個交點,記S(m)=|xM-xN|,則S(m)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知拋物線y2=2px(p>0),焦點到準線的距離為4,過點P(1,-1)的直線交拋物線于A,B兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點P恰是線段AB的中點,求直線AB的方程.

查看答案和解析>>

同步練習冊答案