20.已知$|{\vec a}|=3,|{\vec b}|=4,\vec a•\vec b=-6\sqrt{3}$.求:
(Ⅰ)$\vec a與\vec b$的夾角θ;
(Ⅱ)$|{\vec a+\vec b}|$.

分析 (Ⅰ)根據(jù)平面向量數(shù)量積的定義,求出cosθ的值即可得出夾角θ;
(Ⅱ)根據(jù)平面向量模長(zhǎng)公式,即可求出$|{\vec a+\vec b}|$的大。

解答 解:(Ⅰ)$|{\vec a}|=3,|{\vec b}|=4,\vec a•\vec b=-6\sqrt{3}$,
∴3×4×cosθ=-6$\sqrt{3}$,
解得cosθ=-$\frac{\sqrt{3}}{2}$,
又θ∈[0,π],
解得θ=$\frac{5π}{6}$;
∴$\vec a與\vec b$的夾角θ為$\frac{5π}{6}$;
(Ⅱ)∵${(\overrightarrow{a}+\overrightarrow)}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$
=32+2×(-6$\sqrt{3}$)+42
=25-12$\sqrt{3}$,
∴$|{\vec a+\vec b}|$=$\sqrt{25-12\sqrt{3}}$.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積求夾角和模長(zhǎng)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知0<a<$\frac{1}{2}$,隨機(jī)變量ξ的分布列如下,則當(dāng)a增大時(shí)( 。
ξ-101
Pa$\frac{1}{2}$-a$\frac{1}{2}$
A.E(ξ)增大,D(ξ)增大B.E(ξ)減小,D(ξ)增大C.E(ξ)增大,D(ξ)減小D.E(ξ)減小,D(ξ)減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知ξ的分布列如下:
ζ1234
p$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{4}$
并且η=3ξ+1,則方差Dη=( 。
A.$\frac{179}{16}$B.$\frac{143}{16}$C.$\frac{179}{48}$D.$\frac{136}{48}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知m∈R,復(fù)數(shù)z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,當(dāng)m為何值時(shí):(1)z∈R?(2)z是純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)$f(x)=sin({\frac{π}{2}-2x}),x∈R$,則 f(x)是( 。
A.最小正周期為 π的奇函數(shù)B.最小正周期為 $\frac{π}{2}$的偶函數(shù)
C.最小正周期為$\frac{π}{2}$ 的奇函數(shù)D.最小正周期為 π 的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)y=f(x)是R上的偶函數(shù),滿足f(x+2)=f(x-2)+f(2),且當(dāng)x∈[0,2]時(shí),f(x)=2x-4,令函數(shù)g(x)=f(x)-m,若g(x)在區(qū)間[-10,2]上有6個(gè)零點(diǎn),分別記為x1,x2,x3,x4,x5,x6,則x1+x2+x3+x4+x5+x6=-24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知復(fù)數(shù)z=(m2+3m-4)+(m2-2m-24)i(m∈R).
(1)若復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在一、三象限的角平分線上,求實(shí)數(shù)m的值;
(2)若復(fù)數(shù)z為純虛數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)$y=\frac{sinθ-3}{cosθ+2},θ∈[{-\frac{π}{2},\frac{π}{2}}]$的值域?yàn)椋ā 。?table class="qanwser">A.$[{-2-\frac{{2\sqrt{3}}}{3},-2+\frac{{2\sqrt{3}}}{3}}]$B.$[{-2,-2+\frac{{4\sqrt{3}}}{3}}]$C.[-2,-1]D.$[{-2,-2+\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+lnx$
(1)求函數(shù)f(x)在區(qū)間[1,e]上的最值.
(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=$\frac{2}{3}{x^3}$的下方.
(3)設(shè)h(x)=f'(x),求證:[h(x)]n+2≥h(xn)+2n

查看答案和解析>>

同步練習(xí)冊(cè)答案