在平面直角坐標(biāo)系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標(biāo)軸有三個(gè)交點(diǎn).記過三個(gè)交點(diǎn)的圓為圓C.
(1) 求實(shí)數(shù)b的取值范圍;
(2) 求圓C的方程;
(3) 圓C是否經(jīng)過定點(diǎn)(與b的取值無關(guān))?證明你的結(jié)論.
解:(1) 令x=0,得拋物線與y軸的交點(diǎn)是(0,b),令f(x)=0,得x2+2x+b=0,由題意b≠0且Δ>0,解得b<1且b≠0.
(2) 設(shè)所求圓的一般方程為x2+ y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,這與x2+2x+b=0是同一個(gè)方程,故D=2,F(xiàn)=b,令x=0,得y2+ Ey+b=0,此方程有一個(gè)根為b,代入得E=-b-1,所以圓C的方程為x2+ y2+2x -(b+1)y+b=0.
(3) 圓C必過定點(diǎn)(0,1),(-2,1).
證明:將(0,1)代入圓C的方程,得左邊= 02+ 12+2×0-(b+1)×1+b=0,右邊=0,所以圓C必過定點(diǎn)(0,1);同理可證圓C必過定點(diǎn)(-2,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)x,y∈R,則“x2+4y2≥4”是“x>2且y≥1”的 ( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知實(shí)數(shù)x,y滿足(x-2)2+(y+1)2=1,則2x-y的最大值為________,最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,在正四棱柱ABCD—A1B1C1D1中,E、F、G、H分別是棱CC1、C1D1、D1D、DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動(dòng),則M滿足條件______________時(shí),有MN∥平面B1BDD1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com