3.下列命題中,正確命題的個(gè)數(shù)為(  )
①x2-2x-3<0是命題;
②x=2是x2-4x+4=0成立的充分非必要條件;
③命題“三角形的三個(gè)內(nèi)角和為180°”的否命題是“三角形的內(nèi)角和不是180°”;
④命題“?x∈R,x2≥0”的否定是“?x∈R,x2<0”.
A.0B.1C.2D.3

分析 舉出反例,可判斷①;根據(jù)充要條件的定義,可判斷②;寫出原命題的否命題,可判斷③;寫出原命題的否定命題,可判斷④.

解答 解:①x=4時(shí),x2-2x-3<0不成立,故錯(cuò)誤;
②x=2是x2-4x+4=0成立的充要條件,故錯(cuò)誤;
③命題“三角形的三個(gè)內(nèi)角和為180°”的否命題是“不是三角形,內(nèi)角和不是180°”,故錯(cuò)誤;
④命題“?x∈R,x2≥0”的否定是“?x∈R,x2<0”,故錯(cuò)誤.
故選:A

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了充要條件,四種命題,全稱命題等知識(shí)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1-x)7的二項(xiàng)展開式中,x的系數(shù)與x3的二項(xiàng)式系數(shù)之和等于28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:(x-3)2+(y-4)2=4.
(1)若直線l1過定圓心C,且平行于直線x-2y+3=0,求直線l1的方程;
(2)若圓D半徑是3,圓心在直線l2:x+y-2=0上,且圓與C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(3,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.6B.-6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2alnx+x2-2x(a∈R)在定義域上為單調(diào)遞增函數(shù),則a的最小值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(1)當(dāng)a=1時(shí),求曲線y=g(x)在x=1處的切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)g(x)的單調(diào)性;
(3)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于A(x1,y1),B(x2,y2)兩點(diǎn),其中x1<x2,
證明$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計(jì)算下列各式:
(1)(0.027)${\;}^{\frac{1}{3}}$-(6$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+256${\;}^{\frac{3}{4}}$+(2$\sqrt{2}$)${\;}^{\frac{2}{3}}$+π0
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)集合U={(x,y)|y=3x-4},A={(x,y)|$\frac{y-2}{x-2}$=3},則∁UA={(2,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知隨機(jī)變量X:N(2,σ2),若P(x<a)=0.32,則P(x>4-a)=(  )
A.0.32B.0.36C.0.64D.0.68

查看答案和解析>>

同步練習(xí)冊(cè)答案