14.已知圓C:(x-3)2+(y-4)2=4.
(1)若直線l1過定圓心C,且平行于直線x-2y+3=0,求直線l1的方程;
(2)若圓D半徑是3,圓心在直線l2:x+y-2=0上,且圓與C外切,求圓D的方程.

分析 (Ⅰ)直線l1的方程為 x-2y+c=0,根據(jù)l1過圓心(3,4),代入求出c,即可求直線l1的方程;
(Ⅱ)根據(jù)圓心在直線L:x+y-2=0上,設(shè)出圓心D坐標(biāo),而圓D與圓C外切,得到圓心距CD等于兩半徑之和,利用兩點間的距離公式列出關(guān)于a的方程,求出方程的解得到a的值,確定出圓心D坐標(biāo),即可確定出圓D的方程.

解答 解:(1)因為直線l1與直線x-2y+3=0平行
設(shè)直線l1的方程為 x-2y+c=0
又因為l1過圓心(3,4)
故有3-2×4+c=0,即c=5
所以l1的方程為:x-2y+5=0
(Ⅱ)依題意設(shè)D(a,2-a),
∵已知圓心C(3,4),r=2,且兩圓相切,
∴CD=5,即$\sqrt{(a-3)^{2}+(2-a-4)^{2}}$=5,
整理得:a2-a-6=0,即(a+2)(a-3)=0,
解得:a=-2或a=3,
∴D(3,-1)或D(-2,4),
則所求圓方程為(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.

點評 此題考查了直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程,以及圓的切線方程,弄清題意是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若α⊥β,α∩β=l,點P∈α,P∉l,則下列命題中正確的為①③④.(只填序號)
①過P垂直于l的平面垂直于β;
②過P垂直于l的直線垂直于β;
③過P垂直于α的直線平行于β;
④過P垂直于β的直線在α內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x-4|+|x-1|.
(1)解不等式:f(x)≤5;
(2)若函數(shù)g(x)=$\frac{2017x-2016}{f(x)+2m}$的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若sinα=$\frac{4}{5}$,則sin(α+$\frac{π}{4}}$)-$\frac{{\sqrt{2}}}{2}$cosα等于( 。
A.$\frac{{2\sqrt{2}}}{5}$B.$-\frac{{2\sqrt{2}}}{5}$C.$\frac{{4\sqrt{2}}}{5}$D.$-\frac{{4\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=3-|x-1|+m的圖象與x軸沒有交點,則實數(shù)m的取值范圍是( 。
A.m≥0或m<-1B.m>0或m<-1C.m>1或m≤0D.m>1或m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)U=R,A={x|-3<x≤4},B={x|0≤x<8}.求A∩B,A∪B,∁UA,∁UB,∁U(A∩B),∁U(A∪B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(2,1),B(0,2)且過點P(1,-1)的直線l與線段AB有公共點,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,正確命題的個數(shù)為( 。
①x2-2x-3<0是命題;
②x=2是x2-4x+4=0成立的充分非必要條件;
③命題“三角形的三個內(nèi)角和為180°”的否命題是“三角形的內(nèi)角和不是180°”;
④命題“?x∈R,x2≥0”的否定是“?x∈R,x2<0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinθ-2cosθ=0,則cos2θ+sin2θ=1.

查看答案和解析>>

同步練習(xí)冊答案